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Accept-reject sampling methods like Metropolis and Metropolis-Hastings require lots of com-

putation time because of the several steps required to calculate likelihoods, compute ratios and

choose proposals vs current values. These multiple steps are tedious to code, and require "tuning"

to achieve optimum efficiency. Gibbs sampling allows us to streamline that process by making

proposals that are so smart that we retain all of them. This makes Gibbs updates much easier to

code and faster to execute than accept-reject sampling methods. We can usefully illustrate Gibbs

updates by showing how we would use them to estimate the posterior distribution of the mean of a

normally distributed random variable. We will call this mean θ. Recall that draws of the random

variable yi from the normal distribution with mean θ arise as

yi ∼ normal(θ, ς2). (1)

We can think of yi, of course, as an observation on some socio-ecological process. For this

example, we begin by assuming that the variance of the observations, ς2 is known. It is important

to understand the “knowing” ς2 is not the same as calculating it as the variance of a sample dataset.

Rather we are treating it here as a fully observed quantity, as if we had calculated it from all of the

potential observations. In the following discussion, it is particularly important to keep in mind that

ς2 is the variance of the distribution of the observations (yi), not the variance of the distribution of

the mean of the observations (θ).

We have prior information about θ,

θ ∼ normal
(
µ0, σ

2
0

)
. (2)
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This information might be informative or vague. Remember that µ0 and σ20 are numeric ar-

guments. They are known. We have a data set y with n observations. Given this information,

we want to estimate the full-conditional distribution of θ. If we assume that the variance in the

likelihood (ς2) is known then,

[θ|·] ∝
n∏
i=1

normal
(
yi|θ, ς2

)
normal

(
θ|µ0, σ20

)
. (3)

We define µ1 and σ21 as the parameters of the full conditional posterior distribution of θ, that is

[θ|·] = normal(µ1, σ21). (4)

Note that σ21 is the updated variance of the distribution of the mean not the variance of the

distribution of the observations, which of course is ς2. Note that we are treating ς2 as known.

Equation 3 shows that we have a normal likelihood for the mean with known variance and a normal

prior on the mean, which are conjugates. When this is the case, we can calculate the parameters of

the full conditional posterior distribution of θ directly using the formulas

µ1 =

(
µ0
σ2
0
+

∑n
i=1 yi
ς2

)
(

1
σ2
0
+ n

ς2

) (5)

σ21 =

(
1

σ20
+
n

ς2

)−1

. (6)

Notice that every quantity on the right hand side of these equations is known; µ0 and σ20 are

known as priors. The yi are observations in hand, and we are assuming (for now) that ς2 is known.

So, we have all we need to know to make a draw from the distribution of θ using equation 4 because

we know µ1 and σ21. So, why wouldn’t we just use equations 5 and 6 to estimate the parameters of

the posterior of θ and be done with it? Because we must assume that ς2 is known, which is virtually

never the case. Somehow we must learn about ς2 to estimate θ.

So, what about ς2? Again the observations arise from yi ∼ normal
(
θ, ς2

)
and we seek to

understand the full conditional1 posterior distribution of ς2. If we assume that θ is known, then
1The distribution is conditional because we must know θ.
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[
ς2|·
]
∝

n∏
i=1

normal
(
yi|θ, ς2

)
inverse gamma

(
ς2|α0, β0

)
. (7)

We define the parameters of the full conditional distribution of ς2 as α1 and β1 so that

[
ς2|·
]
= inverse gamma (α1, β1) . (8)

where α0 and β0 are the parameters of the prior distribution of ς2. We have a normal likelihood

with a known mean and unknown variance and an inverse gamma prior on the variance. When this

is true we can calculate the parameters of the full-conditional distribution of ς2 using

α1 = α0 +
n

2
(9)

β1 = β0 +

∑n
i=1 (yi − θ)2

2
. (10)

Again, remember that β0 and α0 are known arguments to priors, so in practice they would be

numeric. It follows that all quantities on the right hand side of equations 9 and 10 are known. It is

also critical to understand that β1 is a scale parameter.

It might seem that we have tied ourselves in a knot. We need to know ς2 to estimate θ and we

need to know θ to estimate ς2. This is just the kind of problem that MCMC can solve because at

each step in the chain we pretend all of the parameters save one are known. Equations 5 - 10 give

us all we need to construct a very fast sampler for θ and ς2. Define k as the iteration in the chain.

So, element 100 in the chain is indexed by k = 100. Be sure you understand that k is a superscript

not an exponent. The algorithm is:

1. Use the current value of ς2(k) to calculate µ(k+1)
1 and σ2(k+1)

1 from equations 5 and 6. Make a

draw from θ(k+1) ∼ normal
(
µ
(k+1)
1 , σ

2(k+1
1

)
and store it in the chain.

2. Use the updated value of θ(k+1) to calculate α(k+1)
1 and β(k+1)

1 using equations 9 and 10. Make

a draw from ς2(k+1) ∼ inverse gamma
(
α
(k+1)
1 , β

(k+1)
1

)
and store it in the chain.

3. Repeat 1-2.
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A sufficient number of repetitions usually converges on the posterior distributions of θ and ς2

much more quickly than if we used an accept-reject sampling method like Metropolis-Hastings or

Metropolis. However, the estimates would be the same.
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