
Model Selection Lab: Poisson Regression

Model Statement

We will use the continental U.S. bird richness data set for this lab. In a previous lab on MCMC we used a
simple linear regression model with the log of the counts (log(yi), for i = 1, . . . , n) as the response variable
and the state area as the predictor variable (i.e., covariate xi).

For simplicity in the MCMC lab we transformed the counts using the log function and modeled this
transformed response variable with a Gaussian distribution:

log(yi) ∼ N(β0 + β1xi, σ
2) . (1)

Now suppose that we wish to model the bird counts (yi) by state, directly. The support of yi are the
non-negative integers. Thus, a reasonable starting place for a data model for yi is the Poisson distribution
such that

yi ∼ Pois(λi) . (2)

Now we can link the “intensities” (λi) to the covariates (xi) and regression coefficients (β0, . . . , βp) using a
log link function

log(λi) = β0 + β1x1,i + . . .+ βpxp,i , (3)

for a set of covariates (xj,i, j = 1, . . . , p). An important point here is that the λi are linked deterministically
to the regression parameters βj. Thus, we only need a prior for βj (for j = 1, . . . , p). It is common to see
regression part of the model written as log(λi) = β0 + x′

iβ or log(λi) = x′
iβ, depending on whether the

intercept is included in β (in the latter case, the first element of vector xi is 1).

A reasonable prior for unconstrained regression coefficients is Gaussian (because the support for βj
includes all real numbers), thus we could use

βj ∼ N(µj, σ
2
j ) for j = 1, . . . , p , (4)

as priors. Note that it is common to specify the same prior mean and variance for all regression coefficients,
but you don’t have to.

1



Information Criteria

Recall that the deviance information criterion (DIC):

DIC = D̂ + 2pD , (5)

for pD = D̄− D̂. These different forms of deviance can be computed using MCMC output from our model
using

D̂ = −2
n∑

i=1

log
(

Pois(yi|λ̂i)
)
, (6)

D̄ = −2

∑T
t=1

∑n
i=1 log

(
Pois(yi| exp(β

(t)
0 + β

(t)
1 x1,i + . . .+ β

(t)
p xp,i))

)
T

, (7)

where λ̂i is the posterior mean of λ and β
(t)
j is the tth MCMC sample (for j = 1, . . . , p and T total MCMC

samples).

Similarly, the Watanabe-Akaike information criterion is

WAIC = −2
n∑

i=1

lppdi + 2pD , (8)

where the ‘lppd’ stands for log posterior predictive density for yi and can be calculated using MCMC as

lppdi = log

(∑T
t=1 Pois(yi| exp(β

(t)
0 + β

(t)
1 x1,i + . . .+ β

(t)
p xp,i))

T

)
, (9)

and where Gelman et al. (2013) recommend calculating pD as

pD =
n∑

i=1

(∑T
t=1(log(Pois)

(t)
i −

∑T
t=1 log(Pois)

(t)
i /T )2

T

)
, (10)

where, log(Pois)
(t)
i = log

(
Pois(yi| exp(β

(t)
0 + β

(t)
1 x1,i + . . .+ β

(t)
p xp,i))

)
.

The D∞ criterion based on posterior predictive loss is defined as

D∞ =
n∑

i=1

(yi − E(ỹi|y))2 +
n∑

i=1

Var(ỹi|y) . (11)

To calculate E(ỹi|y) and Var(ỹi|y), first draw ỹ
(t)
i ∼ Pois(yi| exp(β

(t)
0 + β

(t)
1 x1,i + . . . + β

(t)
p xp,i) on the tth

MCMC iteration for all t = 1, . . . , T . Then E(ỹi|y) is the sample mean of the ỹ
(t)
i and Var(ỹi|y) is the

sample variance over the T MCMC iterations.
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