
Explanation of the relationship between lognormal and normal models for data

A model for the mean x′
iβ of lognormally distributed data yi implies that

yi = x′
iβe

εi , εi ∼ normal(0, σ2). (1)

Taking the log of both sides, we have

log(yi) = log (x′
iβ) + εi, εi ∼ normal(0, σ2), (2)

which is the same as

log(yi) ∼ normal(log (x′
iβ), σ2). (3)

If the log of a random variable is normally distributed with mean log (x′
iβ) , and variance σ2

then the random variable is lognormally distributed with parameters (not moments) log (x′
iβ) and

σ2:

yi ∼ lognormal( log (x′
iβ)︸ ︷︷ ︸

centrality parameter

, σ2︸︷︷︸
scale parameter

). (4)

The centrality parameter of a lognormal distribution is defined as the mean of the random

variable on the log scale and the scale parameter is defined as the variance of the random variable

on the log scale as shown in equation 3. You need to be very careful with coding if you use

eq. 3. If this is part of a hierarchical model, you must exponentiate the left hand side

if you want the variable to be on the lognormal (i.e., exponentiated normal) scale.

We can substitute any g(θ,xi) for x′
iβ as our model of the mean (or median) and the logic

remains the same, but we need to careful about the interpretation of the coefficients. We often see

the mean model written as exp(x′
iβ) to assure that it produces positive values, however, in this case

the slopes specify the multiplicative change from the mean (e.g., eβ0eβ1x1,i) in y per unit change

in x. Constraining x′
iβ to be positive rather than exponentiating it allows the interpretation of

the slopes to be the same as for any linear model, which is the additive change in the mean (e.g,

β0 + β1x1,i) per unit change in x.
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