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See
https://www.tcbegley.com/blog/posts/bayesian-billiards
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Laplace’s theory of “inverse probability”

P(C|E) =
P(E|C)Pprior(C)

∑(E|C′)Pprior(C′)
(1)
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"Laplace’s principle being dead, it should be decently buried out of
sight, and not embalmed in text-books and examination papers...
The indiscretions of great men should be quietly allowed to be
forgotten."

George Chrystal 1891
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The frequentist view
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“My personal conviction is that the theory of inverse probability is
founded upon an error and must be wholly rejected”
R. A. Fischer

“There has not been a single date in the history of the law of
gravitation when a modern significance test would not have
rejected the law outright.”
Harold Jefferys

“The p-value is almost nothing sensible you can think of. I tell
students to give up trying.”
Stephen Goodman

What is the collective noun for a group of statisticians?
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Gelfand, A. E., and A. F. M. Smith. 1990. Sampling-based
approaches to calculating marginal densities. Journal of the
American Statistical Association 85:398-409.
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Bayesian inference

All unobserved quantities are treated as random variables.

θ

[θ
 | 

y]
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Random variables

All unobserved quantities are treated in exactly the same way.
▶ model parameters
▶ latent states
▶ missing data
▶ predictions and forecasts
▶ observations (before they are observed)
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Exercise

▶ Assume we have two, jointly distributed random variables, θ

and y. The random variable θ represents unobserved
quantities of interest. The random variable y represents
observations, which become fixed after they are observed.

▶ Derive Bayes’ Theorem

[θ |y] = [y|θ ][θ ]
[y]

(2)

using your knowledge of the laws of probability, particularly the
definition of conditional probability.
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Derivation
Recall the definition of conditional probability

[θ |y] = [θ ,y]
[y]

(3)

[y|θ ] = [θ ,y]
[θ ]

. (4)

Solving 4 for [θ ,y]

[θ ,y] = [y|θ ] [θ ] . (5)

Substituting the right hand side of 5 for [θ ,y] in 3 we obtain Bayes’
Theorem

[θ |y] = [y|θ ] [θ ]
[y]

. (6)
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We will often make use of the equivalent equation

[θ |y] = [y,θ ]
[y]

(7)

as a starting point for developing hierarchical models by factoring
[y,θ ] into ecologically sensible components that can be treated in
MCMC as univariate distributions. More about that soon.
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What is [y]?

Recall the law of total probability for discrete random variables

                                                         

    A

B
1

B
3

B
2

[A] = ∑
i
[A | Bi] [Bi] . (8)

and for continuous random variables

[A] =
∫

B
[A|B] [B]dB. (9)
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What is [y]?
It follows that

[y] = ∑
θi∈{Θ}

[y|θi] [θi] for discrete parameters (10)

[y] =
∫

θ

[y|θ ] [θ ]dθ for continuous parameters. (11)

Thus, Bayes theorem for discrete valued parameters is

[θ |y] = [y|θi] [θi]

∑θi∈{Θ} [y|θi] [θi]
(12)

and for parameters that are continuous,

[θ |y] = [y|θ ] [θ ]∫
θ
[y|θ ] [θ ]dθ

. (13)
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More about [y]

▶ [y] is the marginal distribution of the data, a distribution
before the data are observed and a normalizing constant after
the data are observed.

▶ It is also called the prior predictive distribution. Why?
▶ Because [y] is a constant after the data are observed,

[θ |y] ∝ [y,θ ] (14)
∝ [y|θ ] [θ ] (15)
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More about [y]: Recall the PMF and likelihood profile
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[y] is critical to Bayes
y = (5, 10, 11, 12, 14, 9, 8, 6)’
likelihood = ∏

8
i=1 Poisson(yi|θ)

posterior = ∏
8
i=1 Poisson(yi|θ)gamma(θ |.0001,.0001)

[y]
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Cut to example
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Probability mass function [y|θ ]

θ is known to be 1
2 . Probability of number of whites conditional on

three draws and θ = 1
2 :

y = Number of whites [y|θ ]
0 .125
1 .375
2 .375
3 .125

∑
4
i=1 [y|θi] = 1
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New cans, switch to right board
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Likelihood [y|θ ]

θ is unknown. Probability of two whites on three draws conditional
on θi

Hypothesis Likelihood [y|θi]

θ1=5/6 .347
θ2=1/2 .375
θ3=1/6 .069

∑
3
i=1 [y|θi] = .791
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Posterior distribution [θ |y]

Probability of θi conditional on two whites on three draws
Prior Likelihood Joint Posterior

Hypothesis [θi] [y|θi] [y|θi] [θi]
[y|θi][θi]

[y] = [θi|y]
θ1=5/6 0.333 0.347 0.115 0.439
θ2=1/2 0.333 0.375 0.125 0.474
θ3=1/6 0.333 0.069 0.023 0.087

[y] = ∑
3
i=1 [y|θi] [θi] = 0.261 ∑

3
i=1 [θi|y] = 1
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Likelihood profile [y|θ ]
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Posterior distribution [θ |y]
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The components of Bayes theorem

Posterior︷︸︸︷
[θ |y] =

likelihood︷︸︸︷
[y|θ ]

prior︷︸︸︷
[θ ]∫

θ

[y|θ ] [θ ]dθ︸ ︷︷ ︸
marginal distribution of data

(16)
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The components of Bayes Theorem

θ

Courtesy of Chris Wikle, University of Missouri
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[θ |y] = [y|θ ] [θ ]∫
θ
[y|θ ] [θ ]dθ

(17)

The prior, [θ ] , can be informative or vague.

θ
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[θ |y] = [y|θ ][θ ]∫
θ
[y|θ ] [θ ]dθ

(18)

The likelihood (a.k.a. data distribution, [y|θ ])

θ
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[θ |y] = [y,θ ]
[y]

=
[y|θ ][θ ]∫

θ
[y|θ ] [θ ]dθ

(19)

The product of the prior and the likelihood, [y|θ ][θ ], the joint
distribution of the parameters and the data, [y,θ ].

θ

What is the maximum likelihood estimate of θ?
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[θ |y] = [y|θ ][θ ]∫
θ
[y|θ ] [θ ]dθ

(20)

The marginal distribution of the data (the denominator) is the area
under the joint distribution.

θ

32 / 36



History Basics Derivation Example Components Connections

What we are seeking: The posterior distribution, [θ |y].

[θ |y] = [y|θ ][θ ]∫
θ
[y|θ ] [θ ]dθ

(21)

θ

Note that we are dividing each point on the dashed line by the area
under the dashed line to obtain a probability density function
reflecting our prior and current knowledge about θ .
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So what?

What does this enable you to do? Review factoring joint
distributions:
Remember from the basic laws of probabilty that
p z1, z2( ) = p z1 | z2( ) p z2( ) = p z2 | z1( ) p z( )1

This genearlizes to:

z= z1,z2,...zn( )
p z1,z2,...zn( ) = p zn | zn−1....z1( ).....p z3 | z2, z1( ) p z2 | z1( ) p(z1)
where the components zi  may be scalars or
subvectors of z and the sequence of their
conditioning is arbitrary. This equation can
be simplified using knowledge of indepdence.
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So what?
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So what?

Posterior︷︸︸︷
[θ |y] =

[y,θ ]
[y]

=

likelihood︷︸︸︷
[y|θ ]

prior︷︸︸︷
[θ ]∫

θ

[y|θ ] [θ ]dθ︸ ︷︷ ︸
marginal

(22)

Useful models will be more complex:

[θ1,θ2,θ3,...,θn,z1,z2..zn|y1,y2]︸ ︷︷ ︸
multiple parameters, latent states, data sets

∝ [θ1,θ2,θ3,...,θn,z1,z2..zn,y1,y2]︸ ︷︷ ︸
factor into conidtional distributions

We use the rules of probability to factor complex joint distributions into a series
of conditional distributions. We can then use the Markov chain Monte Carlo
algorithm to escape the need for integrating the marginal data distribution,
allowing us to find the marginal posterior distributions of all of the unobserved
quantities. Which, of course, is where we started out. And where we are
headed.
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