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Laplace’s theory of “inverse probability”

P(E|C)Pprior(C)
P ) =SB o ©)

ferent. I propose to determine the probability of the
causes of events, a question which has not been given
due consideration before, but which deserves even
more to be studied, for it is principally from this point
of view that the science of chances can be useful in
civil life.

Translated from the original French by S. M. Stigler, University of Chicago.
Originally published as “Mémoire sur la probabilité des causes par les événe-
mens,” par M. de la Place, Professeur 4 I'Ecole royal Militaire, in Mémaires
de Mathématique et de Physique, Presentés a I'Académie Royale des Sciences,
par divers Savans & lits dans ses Assemblées, Tome Sixieme (1774) 621-656.
Reprinted in Laplace’s Oeuvres complétes 8 27-65.
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"Laplace's principle being dead, it should be decently buried out of
sight, and not embalmed in text-books and examination papers...
The indiscretions of great men should be quietly allowed to be

forgotten."

George Chrystal 1891
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The frequentist view

Statistical Methods for
Research Workers

By

R. A. FISHER, M.A,

ambridge
jment Station
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“My personal conviction is that the theory of inverse probability is
founded upon an error and must be wholly rejected”
R. A. Fischer

“There has not been a single date in the history of the law of
gravitation when a modern significance test would not have
rejected the law outright.”

Harold Jefferys

“The p-value is almost nothing sensible you can think of. | tell
students to give up trying.”
Stephen Goodman

What is the collective noun for a group of statisticians?
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History

8/ 36



History

Gelfand, A. E., and A. F. M. Smith. 1990. Sampling-based
approaches to calculating marginal densities. Journal of the

American Statistical Association 85:398-400.
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Basics

Bayesian inference

All unobserved quantities are treated as random variables.

B1y]
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Basics

Random variables

All unobserved quantities are treated in exactly the same way.
» model parameters
> |atent states
> missing data
» predictions and forecasts
>

observations (before they are observed)
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Derivation

Exercise

» Assume we have two, jointly distributed random variables, 6
and y. The random variable 0 represents unobserved
quantities of interest. The random variable y represents
observations, which become fixed after they are observed.

» Derive Bayes' Theorem

_ blej[e]
[6ly] = ] (2)

using your knowledge of the laws of probability, particularly the
definition of conditional probability.
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Derivation

Derivation

Recall the definition of conditional probability

_16.)]
_16.)]
Solving 4 for [6,y]
6,y =[y|6][6].

(5)

Substituting the right hand side of 5 for [6,y] in 3 we obtain Bayes'

Theorem

8]y] =

pIo]0]

Al

(6)
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Derivation

We will often make use of the equivalent equation

_ D6
[6]y] = B (7)

as a starting point for developing hierarchical models by factoring
[v, 0] into ecologically sensible components that can be treated in
MCMC as univariate distributions. More about that soon.
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Derivation

What is [y]?

Recall the law of total probability for discrete random variables

Y

&

[A] =) [A]Bi][Bi]. (8)

1

and for continuous random variables

)= [ 18] i8] ae. ©)
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What is [y]?

It follows that

] = Z [v|6:] [6;] for discrete parameters (10)
91'6{@)}

] = /[y|9] [6]d6 for continuous parameters. (11)
0

Thus, Bayes theorem for discrete valued parameters is

[v[6:][61]

O] = Yoe(oy [v/6:][6/] (12)
and for parameters that are continuous,
___Dlelfe]
O = T blele1ae (3)
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More about [y]

» [y] is the marginal distribution of the data, a distribution
before the data are observed and a normalizing constant after
the data are observed.

> |t is also called the prior predictive distribution. Why?

» Because [y] is a constant after the data are observed,

Bly] o< [v,6] (14)
o< [y|6][6] (15)
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More about [y]: Recall the PMF and likelihood profile

PMF: 6 is known, y varies Likelilhood profile: y is known, 6 varies
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Derivation

[y is critical to Bayes
y=(5, 10, 11, 12, 14, 9, 8, 6)’
likelihood = [T5_, Poisson(y;|0)
[1%_, Poisson(y;|6)gamma(|.0001,.0001)

posterior =
bl
Likelihood profile Posterior distribution
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Cut to example
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Probability mass function [y|6)]

6 is known to be % Probability of number of whites conditional on
three draws and 6 = %:
| y = Number of whites | [y[6] |

0 .125
1 .375
2 .375
3 .125
2?21 [)"91‘] = 1
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New cans, switch to right board
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Likelihood [y|6]

Ois unknown. Probability of two whites on three draws conditional
on 0,

] Hypothesis \ Likelihood [y|6;] ‘

91 =5/6 347
6h=1/2 375
0;=1/6 .069
Y bl6] = 791
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Posterior distribution [6]y]

Probability of 6; conditional on two whites on three draws

Prior Likelihood Joint Posterior
Hypothesis (6] [v/6] blede) MU~ [g)y)
0:=5/6  0.333 0.347 0.115 0.439
6,=1/2  0.333 0.375 0.125 0.474
6;=1/6  0.333 0.069 0.023 0.087
bl=xi,blelle]= 0261 Y; [0 =1
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Example

Likelihood profile [y|6)]

[2 white on 3 draws|6]

<
z
> oo
03 0, 01
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Posterior distribution [6]y]

[6]2 white on 3 draws]

1.5

[0ly]




The components of Bayes theorem

likelihood prior
Posterior P
T yle] [6]

)] =
| blsiislae

marginal distribution of data

YD



The components of Bayes Theorem

0.2 Lo ]
> Obs. Likelihood
Z0.15 1
3
o 041
o

0.05¢
% 4 2 0 2 4 6

0

Courtesy of Chris Wikle, University of Missouri
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__blele)
O e fo]ao )

The prior, 6], can be informative or vague.

0.2r

0.15f

Probability
o

0.05¢
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__bleye
O T vienfelae (e)

The likelihood (a.k.a. data distribution, [y|6])

Obs. Likelihood

Probability
o
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.6 Dblo)le]
b~ Joblel[e]d6

The product of the prior and the likelihood, [y|6]/6], the joint
distribution of the parameters and the data, [y, 0].

[61y] = (19)

0.2r
0.15¢

Probability
o°

0.05

What is the maximum likelihood estimate of 87
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__ Dle]le]
[B]y] = Toh6l[6]de (20)

The marginal distribution of the data (the denominator) is the area
under the joint distribution.

0.2} i —
> Obs. Likelihood
Z 015 1
8
8 01
o

0.05 Normalization (Denont:

0 f /"_-‘ .
-6 -4 -2 0 2 -+ 6

0
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What we are seeking: The posterior distribution, [6]y].

_ pjele)
8b]= 716710100 (21

Probability
o ©°

0.

Normalization (Denom:
G /"‘_"-"-J\
6 —4 -2 0 2 4 6

0

Note that we are dividing each point on the dashed line by the area
under the dashed line to obtain a probability density function
reflecting our prior and current knowledge about 6.
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Connections

So what?

What does this enable you to do? Review factoring joint
distributions:
Remember from the basic laws of probabilty that

p(Zl,Z2)= p(Zl lZZ)p<Z2)=p(Zz IZl)p(Z)l

This genearlizes to:

z=(zl,z2,...zn)

where the components z; may be scalars or
subvectors of z and the sequence of their
conditioning is arbitrary. This equation can

be simplified using knowledge of indepdence.
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So what?

B C

Pr(4, B) = Pr(A|B) Pr(B) Pr(4, B,C) = Pr(4|B,C) x
Pr(B|C) Pr(C)

m o A B v A B
~7 S
c C
T N
b D E
Pr(4, B,C, D) = Pr(4]C) x Pr(4, B,C, D, E) = Pr(4[C) x
Pr(B|C) Px(C|D) Px(D) Pr(B|C) Px(C|D, E) x
Pr(D) Pr(E)
v / A v / A
B(\([ B I:

Y \

Pr(4, B, C, D) = Pr(A|B, C, D) x Pr(4, B, C, D) = Pr(A|B,C, D) x
Pr(B|C, D) x Pr(C|D) x
Pr(C|D) Pr(D) Pr(B)Pr(D)
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So what?

PN Iiﬁ/gd%
oh] =" = 22
T et 2

—_—

marginal

Useful models will be more complex:

(01,602,603 ...,0,,21,25..2,|y1,y2] o [61,0,65...,0,,21,2>..2,,¥1,Y2]

multiple parameters, latent states, data sets factor into conidtional distributions

We use the rules of probability to factor complex joint distributions into a series
of conditional distributions. We can then use the Markov chain Monte Carlo
algorithm to escape the need for integrating the marginal data distribution,
allowing us to find the marginal posterior distributions of all of the unobserved
quantities. Which, of course, is where we started out. And where we are
headed.
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