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Outline

Be able to write proper Bayesian regression models for different
types of data.
Appreciate one-to-one relationship between math and JAGS code.
Be able to interpret coefficients of general linear models.
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A great follow-up
This book should be in your library:
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The general Bayesian set-up
Recall that the posterior distribution of the unobserved quantities
conditional on the observed ones is proportional to their joint
distribution:

[θ ,σ2|y] ∝ [θ ,σ2,y].

The joint distribution can be factored into a likelihood and priors for
simple Bayesian models:

[
θ ,σ2,y

]
=
[
y | θ ,σ2][

θ ,σ2] ind .=
[
y | θ ,σ2][

θ
][

σ
2]

A deterministic model of an ecological or socioenvironmental process is
embedded in the likelihood like this:

[
θ,σ2,y

]
∝
[
y | g

(
θ,x

)
,σ2][θ][σ2]
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Simple Bayesian regression models
We use likelihood to connect the underlying process to data:

[yi | µi ,σ
2]︸ ︷︷ ︸

stochastic model

, i = 1, . . . ,n

We formulate the deterministic model:
µi = g

(
β,xi

)︸ ︷︷ ︸
deterministic model

, i = 1, . . . ,n

where β is a vector of regression coefficients and xi is a vector of
predictor variables.
Assuming conditional independence of the data,

[
β,σ2 | y

]
∝

n

∏
i=1

[
yi | g

(
β,xi

)
,σ2]× [

β
][

σ
2]

We choose appropriate deterministic functions (linear or non-linear) and
appropriate probability distributions to compose specific models.
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Identical notation

yi = g(β,xi)+ εi

εi ∼ Normal(0,σ2)

is the same as:

yi |β,σ2 ∼ Normal
(
g(β,xi),σ2),

but the second notation is much more flexible because it generalizes to
distributions that do not have additive errors.
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You don’t have to be Normal!
Assuming you have one predictor x :

Data (y-values) Distribution "Mean" function Link

continuous, real
valued Normal µ = β0 + β1x NA (i.e. identity)

discrete, strictly
positive Poisson µ = eβ0+β1x log

(
µ
)

= β0 + β1x

0 or 1 Bernoulli µ = exp
(

β0+β1x
)

exp
(

β0+β1x
)

+1
logit

(
µ
)

= log
(

µ

1−µ

)
= β0 + β1x

[0,1] Beta µ = exp
(

β0+β1x
)

exp
(

β0+β1x
)

+1
logit

(
µ
)

= log
(

µ

1−µ

)
= β0 + β1x

continuous,
strictly positive,
variance ↑ as a

f(mean)

lognormal µ = eβ0+β1x log
(
µ
)

= β0 + β1x

continuous,
strictly positive,

constant variance
Gamma µ = eβ0+β1x log

(
µ
)

= β0 + β1x
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Continuous and real valued data

Suppose you have collected some continuous data
y = (−10.7,−4.3, · · · ,49) at n sites, along with a predictor xi measured
at each site i which you believe is likely to affect these measurements.
Write a model regressing y on x as follows:

1 Choose a specific stochastic and deterministic model.
2 Specify (vague) priors for your parameters.
3 Write out the DAG and express posterior distribution as

proportional to joint distribution for your model.
4 Write the JAGS code for the model.
5 Interpret the coefficients of your model.
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Normal data, continuous and real valued
Stochastic model:

yi |β0,β1,σ
2 ind .∼ Normal(g(β0,β1,xi),σ2) i = 1, ...,n

Deterministic model:

µi = g(β0,β1,xi) = β0 + β1xi

Priors:

β0 ∼ ? [β0] = ?
β1 ∼ ? [β1] = ?
σ

2 ∼ ? [σ2] = ?
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Normal data, continuous and real valued
DAG:

Posterior distribution:[
β0,β1,σ | y] ∝ [β0,β1,σ ,y]

∝ [y|β0,β1,σ ][β0][β1][σ ]

∝

n

∏
i=1

Normal
(
yi | g

(
β0,β1,xi),σ2)

×Normal
(
β0 | 0,1000)Normal

(
β1 | 0,1000)

×uniform
(
σ | 0,100)

g
(
β0,β1,xi) = β0 + β1xi
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Normal data, continuous and real valued
JAGS code for the model:

b0 ~ dnorm(0, .001)
b1 ~ dnorm(0, .001)
sigma ~ dunif(0, 100)
tau <- 1/sigmaˆ2
for (i in 1:length(y)){

mu[i] <- b0 + b1 * x[i]
y[i] ~ dnorm(mu[i], tau)

}

Interpretation:

β0 : expected outcome when x = 0
β1 : average change in the outcome for a one-unit change in x
σ : std deviation of the outcomes about their respective means
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Counts, discrete and non-negative

You have collected some count data (y = 12,17,1,0,31, . . . ,25) at n
sites, along with a covariate xi at each location which you believe is
likely to affect these counts. Write a model regressing y on x .

1 Choose a specific stochastic and deterministic model.
2 Specify (vague) priors for your parameters.
3 Write out the DAG and express posterior distribution as

proportional to joint distribution for your model.
4 Write the JAGS code for the model.
5 Interpret the coefficients of your model.
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Poisson, discrete and non-negative

Stochastic model:

yi |β0,β1
ind .∼ Poisson(g(β0,β1,xi)) i = 1, ...,n

Deterministic model:

µi = g(β0,β1,xi) = eβ0+β1xi

Priors:

β0 ∼ ? [β0] = ?
β1 ∼ ? [β1] = ?
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Poisson, discrete and non-negative

DAG:

Posterior distribution:

[
β0,β1 | y] ∝

n

∏
i=1

Poisson
(
yi | g

(
β0,β1,xi))

×Normal
(
β0 | 0,1000)Normal

(
β1 | 0,1000)

g
(
β0,β1,xi) = eβ0+β1xi
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Poisson, discrete and non-negative

JAGS code:

b0 ~ dnorm(0, .001)
b1 ~ dnorm(0, .001)
for(i in 1:length(y)){

log(mu[i]) <- b0 + b1 * x[i]
y[i] ~ dpois(mu[i])

}

or

mu[i] <- exp(b0 + b1 * x[i])
y[i] ~ dpois(mu[i])
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Poisson, discrete and non-negative

[
β0,β1 | y] ∝

n
∏
i=1

Poisson
(
yi | g

(
β0,β1,xi ))

×Normal
(
β0 | 0,1000)Normal

(
β1 | 0,1000)

µi = g
(
β0,β1,xi ) = eβ0+β1xi = eβ0eβ1xi

Interpretation: (Exponentiate coeff. and report multiplicative change in mean
counts.)

eβ0 : average count when x = 0

eβ1 : multiplicative change in the mean count per one unit change in x

For example: “Mean western toad juvenile abundance is reduced by a factor of
5.1 (95% CI: 3.4, 10.8) per unit change in UV-B radiation.”

What was the estimate of β1?
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Binary data, 0 or 1 (aka logistic)

p

1 = success

0 = failure
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Binary data, 0 or 1 (aka logistic)

p=.7

1 = success

0 = failure p=.2

1 = success

0 = failure
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Binary data, 0 or 1 (aka logistic)

What happens when we want to relate p to a predictor x , where x can
be any value on the real line? How do we connect x to p ∈ [0,1]?

odds: p
1−p ∈ [0,∞)

log odds: log(odds) = log
(

p
1−p

)
∈ (−∞,∞)

Moving between probability and log odds and relating to x :

logit(p) = log
( p

1−p
)

= x
▶ input to logit() is probability p, output is log odds x

Inverting the above, we obtain p = ex

ex +1 = inverse logit(x) =
expit(x)

▶ input to inverse logit() is x = log odds, output is probability p
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Binary data, 0 or 1 (aka logistic)

Inverse logit mapping: input is log odds = log
(

p
1−p

)
, output is

probability

log(odds)

p

−4 −3 −2 −1 0 1 2 3 4

0
.2

5
.5

.7
5

1
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Binary data, 0 or 1 (aka logistic)

You have collected some binary data (y = 1,0,0,1,1,0,1, . . . ,1) at n
sites, along with a covariate xi measured at each location which you
believe is likely to affect these counts. Write a model regressing y on x .

1 Choose a specific stochastic and deterministic model.
2 Specify (vague) priors for your parameters.
3 Write out the DAG and express posterior distribution as

proportional to joint distribution for your model.
4 Write the JAGS code for the model.
5 Interpret the coefficients of your model.
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Bernoulli, 0 or 1 (aka logistic)
Stochastic model:

yi |β0,β1
⊥

ind .Bernoulli(g(β0,β1,xi)) i = 1, ...,n

Deterministic model:

µi = pi = g(β0,β1,xi) =
eβ0+β1xi

eβ0+β1xi +1

Priors:

β0 ∼ ? [β0] = ?
β1 ∼ ? [β1] = ?
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Choosing reasonable flat priors on logit intercept
Imagine for now that we have no predictor, so pi = µi = eβ0

eβ0 +1 .

If we use the same Normal(0, large variance) prior as before, what is the
induced prior for the success probability p?
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Choosing reasonable flat priors on logit intercept

Now instead consider the prior β0 ∼ Normal(0,2.7).
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Choosing reasonable flat priors on logit effects

log(odds)

p

−4 −3 −2 −1 0 1 2 3 4

0
.2

5
.5

.7
5

1

log(odds)

p

−4 −3 −2 −1 0 1 2 3 4

[ β
1 

| 1
, 2

.7
 ]

β1

+/− 1 SD
+/− 2 SD

25 / 39



Bernoulli, 0 or 1 (aka logistic)

Returning to case with a single predictor, the posterior distribution is:

[
β0,β1 | y] ∝

n

∏
i=1

Bernoulli
(
yi | g

(
β0,β1,xi))

×Normal
(
β0 | 0,2.7)Normal

(
β1 | 0,2.7)

g
(
β0,β1,xi) =

eβ0+β1xi

eβ0+β1xi +1
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Bernoulli, 0 or 1 (aka logistic)

JAGS code for the model:

b0 ~ dnorm(0, 1/2.7)
b1 ~ dnorm(0, 1/2.7)
for(i in 1:length(y)){

logit(p[i]) <- b0 + b1 * x[i]
y[i] ~ dbern(p[i])

}

or

p[i] <- inv.logit(b0 + b1 * x[i])
y[i] ~ dbern(p[i])
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Bernoulli, 0 or 1 (aka logistic)

[
β0,β1 | y] ∝

n
∏
i=1

Bernoulli
(
yi | g

(
β0,β1,xi ))

×Normal
(
β0 | 0,2.7)Normal

(
β1 | 0,2.7)

pi = g
(
β0,β1,xi ) =

eβ0+β1xi

eβ0+β1xi +1
⇐⇒ pi

1−pi
= eβ0+β1xi = eβ0eβ1xi

Interpretation: (Exponentiate coef. and report odds and odds ratios.)

eβ0 : odds when x = 0

eβ1 : multiplicative change in the odds for a one unit change in x

For example: “the odds of detecting weevils in upland willow stems were 3.2
(95% CI: 2.3, 4.8) times greater than detecting them in riparian willow stems.”

What was the estimate of β1? (Might be helpful to identify/define xi ).
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Nonlinear regression

{Figures c/o Bolker, B. 2008. Ecological Models and Data in R. Princeton University Press, Princeton, NJ. USA.}
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Centering and standardizing

The remainder of the slides apply to all of the general linear models, but
we will use a simple linear model for Normally distributed data as an
example.
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Centering predictor data

Rather than the usual linear model yi = β0 + β1xi + εi where
εi

iid∼ N(0,σ2), consider the following linear model:

yi = β0 + β1
(
xi − x̄

)
+ εi

where x̄ = ∑
n
i=1 xi is the sample mean of the predictor.

Why complicate things?

To reduce autocorrelation in MCMC chain and speed convergence.
To make the intercept more easily interpretable.

31 / 39



Centering predictor data

[
β0,β1,σ | y] ∝

n
∏
i=1

Normal
(
yi | g

(
β0,β1,xi ),σ2)×

Normal
(
β0 | 0,1000)Normal

(
β1 | 0,1000)×

uniform
(
σ | 0,100)

g
(
β0,β1,xi ) = β0 + β1

(
xi − x̄

)
b0 ~ dnorm(0, .001)
b1 ~ dnorm(0, .001)
sigma ~ dunif(0, 100)
tau <- 1/sigmaˆ2
xBar <- mean(x)
for (i in 1:length(y)){

mu[i] <- b0 + b1 * (x[i] - xBar)
y[i] ~ dnorm(mu[i], tau)

}
b0_UC <- b0 - b1 * xBar
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Exercise

What is the interpretation of β0 in this model?

What is the interpretation of β1 in this model?
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Recovering uncentered parameters

-20 -10 0 10 20

0
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Centered

intercept = 20.31
x

y
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0
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Uncentered

intercept = 10.81
x

y
β
∗
0 = β0 −β1x̄

β
∗
1 = β1

For this to work properly, all the coefficients in the model must be added.
Slopes will not be the same if there is an interaction term or quadratic. In
these cases, back transforming is not simple.
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Standardizing predictor data

yi = β0 + β1
(xi − x̄

sx

)
where sx is sample standard deviation of predictor
(s2

x = 1
n−1 ∑

n
i=1(xi − x̄)2)

Why complicate things?

To reduce autocorrelation in MCMC chain and speed convergence.
To make the intercept more easily interpretable.
To make coefficients more easily comparable
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Standardizing predictor data

[
β0,β1,σ | y] ∝

n
∏
i=1

Normal
(
yi | g

(
β0,β1,xi ),σ2)×

Normal
(
β0 | 0,1000)Normal

(
β1 | 0,1000)×

uniform
(
σ | 0,100)

g
(
β0,β1,xi ) = β0 + β1

(xi − x̄
sx

)
b0 ~ dnorm(0, .001)
b1 ~ dnorm(0, .001)
sigma ~ dunif(0, 100)
tau <- 1/sigmaˆ2
xBar <- mean(x)
xSD <- sd(x)
for (i in 1:length(y)){

mu[i] <- b0 + b1 * ((x[i] - xBar)/xSD
y[i] ~ dnorm(mu[i], tau)

}
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Recovering unstandardized parameters

yi = β0 + β1
(xi − x̄

sx

)
= β0 +

β1

sx
xi −

β1x̄
sx

= β
∗
0 + β

∗
1 xi

β
∗
0 = β0 −

β1x̄
sx

β
∗
1 =

β1

sx

This only works if there are not squared values or interactions.
It is fine to make predictions using ŷi = β0 + β1

xi−x̄
sx

and plot ŷi against xi
and the observed yi
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lognormal, data continuous and > 0 (log link)

[
β0,β1,σ | y] ∝

n
∏
i=1

lognormal
(
yi | log

(
g
(
β0,β1,xi )

)
,σ2)

×Normal
(
β0 | 0,1000)Normal

(
β1 | 0,1000)

×uniform
(
σ | 0,5)

g
(
β0,β1,xi ) = eβ0+β1xi

Talk about the interpretation of σ .

b0 ~ dnorm(0, .001)
b1 ~ dnorm(0, .001)
sigma ~ dunif(0, 5)
tau <- 1/sigmaˆ2
for(i in 1:length(y)){

mu[i] <- exp(b0 + b1 * x[i])
y[i] ~ dlnorm(log(mu[i]), tau)

}
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lognormal, data continuous and > 0 (not log link)

[
β0,β1,σ | y] ∝

n
∏
i=2

lognormal
(
yi | log

(
g
(
β0,β1,yi−1)

)
,σ2)

×Normal
(
β0 | 0,1000)Normal

(
β1 | 0,1000)

×uniform
(
σ | 0,5)uniform

(
y1 | 1,1E6

)
g
(
β0,β1,yi−1) = yi−1eβ0+β1yi−1

b0 ~ dnorm(0, .001)
b1 ~ dnorm(0, .001)
sigma ~ dunif(0, 5); tau <- 1/sigmaˆ2
y[1] ~ dunif(1, 1E6)
for(i in 2:length(y)){

mu[i] <- y[i-1] * exp(b0 + b1 * y[i-1])
y[i] ~ dlnorm(log(mu[i]), tau)

}
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