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Outline

@ Be able to write proper Bayesian regression models for different

types of data.
@ Appreciate one-to-one relationship between math and JAGS code.

@ Be able to interpret coefficients of general linear models.

.



A great follow-up
This book should be in your library:

Data Analysis

Using Regression and
Multilevel/Hierarchical
Models

ANDREW GELMAN
JENNIFER HILL




-________________________________________________
The general Bayesian set-up

Recall that the posterior distribution of the unobserved quantities
conditional on the observed ones is proportional to their joint
distribution:

[0,0°|y] =< [0,0°,y].

The joint distribution can be factored into a likelihood and priors for
simple Bayesian models:

[0.0%y] = [y| 6.6°] [0.0°] "2 [y | 0.0°] [6][0”]

A deterministic model of an ecological or socioenvironmental process is
embedded in the likelihood like this:

[0,0%,y] =< [y | £(6.x),0°][6] [0?]
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Simple Bayesian regression models
We use likelihood to connect the underlying process to data:

2 .
[y,'"LL,',G] s I=1,...,n
—_———
stochastic model
We formulate the deterministic model:
,ui:g(,B,Xi), i=1,...,n
~——

deterministic model

where 3 is a vector of regression coefficients and x; is a vector of
predictor variables.

Assuming conditional independence of the data,

n

[8,0% Iy] <[y £(8.x),0°] x [8][07]

i=1
We choose appropriate deterministic functions (linear or non-linear) and

aﬁﬁroEriate Erobabiliti distributions to comﬁose sEecific models. '
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Identical notation

vi=g(B,xi)+ &

&; ~ Normal(0, 62)

is the same as:

yi|670-2 ~ Normal(g(,@,x,-),62),

but the second notation is much more flexible because it generalizes to
distributions that do not have additive errors.



You don't have to be Normal!
Assuming you have one predictor x:

Data (y-values) Distribution | 'Mean" function Link
continuous, real _ . .
valued Normal u=Po+Pix NA (i.e. identity)
discrete, strictly . __Bo+Bix _
positive Poisson u = eboth log(1t) = o+ Prx
Oorl Bernoulli _ exp (Bo-+1x) logit(u) = lo (%) Bo+ Bix
exp(ﬁo+ﬁlx)+1
[0,1] Beta — (BB | pogit() = log(ﬁ) = Bo+Pux
exp(ﬁ0+ﬁ1x)+1
continuous,
strictly positive, _ BotBix _
variance 1 as a lognormal = erri log(u) = Bo+P1x
f(mean)
continuous,
strictly positive, Gamma u = ePothix log(1t) = o+ Prx

constant variance
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Continuous and real valued data

Suppose you have collected some continuous data

y =(—10.7,—4.3,--- ,49) at n sites, along with a predictor x; measured
at each site / which you believe is likely to affect these measurements.
Write a model regressing y on x as follows:

@ Choose a specific stochastic and deterministic model.
@ Specify (vague) priors for your parameters.

© Write out the DAG and express posterior distribution as
proportional to joint distribution for your model.

@ Write the JAGS code for the model.

@ Interpret the coefficients of your model.



Normal data, continuous and real valued
Stochastic model:

ind. .
yi|ﬁ07Bla02 g Normal(g(B07ﬁ1’Xi)762) = 1a"'an

Deterministic model:

ui = g(Bo, B1,xi) = Po+ Buixi

Priors:
Bo~7? [Bo] =7
B~ 7 [B1] =7
%~ 7 [6?] =7



Normal data, continuous and real valued
DAG:

Posterior distribution:

[Bo,B1,0 |yl o [Bo,B1,0,y]
o< [y|Bo, B, 01[Bol[Bi][o]

o [[Normal(y; | g(Bo,B1,x:),0°)
i=1

xNormal (3 | 0,1000) Normal (f; | 0,1000)
xuniform (o | 0,100)
g(Bo.B1,xi) = Po+Pixi
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Normal data, continuous and real valued
JAGS code for the model:

b0 ~ dnorm(0, .001)

bl ~ dnorm(0, .001)

sigma ~ dunif (0, 100)

tau <- 1/sigma”2

for (i in 1:length(y)){
mul[i] <- b0 + bl * x[i]
y[i] ~ dnorm(mul[i], tauw)

}

Interpretation:

e fy : expected outcome when x =0

@ f1 : average change in the outcome for a one-unit change in x

@ o : std deviation of the outcomes about their respective means
0 e B )



Counts, discrete and non-negative

You have collected some count data (y =12,17,1,0,31,...,25) at n
sites, along with a covariate x; at each location which you believe is
likely to affect these counts. Write a model regressing y on x.

@ Choose a specific stochastic and deterministic model.
@ Specify (vague) priors for your parameters.

© Write out the DAG and express posterior distribution as
proportional to joint distribution for your model.

@ Write the JAGS code for the model.

@ Interpret the coefficients of your model.

By



Poisson, discrete and non-negative

Stochastic model:

ind. . .
yi|B07B1 ~ POISSOn(g(Bo,ﬁl,X,')) = 1,...,[7

Deterministic model:

wi = g(Bo, Br, x;) = Pt

Priors:

Bo~7? [Bo] = 7
Pr~7 [Bi] =7



Poisson, discrete and non-negative

DAG:

Posterior distribution:

[Bo,B1|y] ﬁPOiSSOH(Yi\g(Bo,ﬁl,Xi))
i=1

xNonnal(ﬁo |0, 1000)N0nna1([31 10,1000)
g(BOaBin) =  Pothixi



Poisson, discrete and non-negative
JAGS code:

b0 ~ dnorm(0, .001)

bl ~ dnorm(0, .001)

for(i in 1:length(y)){
log(mu[i]) <- O + bl * x[i]
y[i] ~ dpois(mu[il)

}

or

mu[i] <- exp(b0 + bl * x[i])
y[i] ~ dpois(mul[il)



Poisson, discrete and non-negative

[(Bo.B |yl = [Poisson(y: | &(Bo. Br.x:))

i=1
xNormal (S | 0,1000) Normal (B; | 0,1000)

pi=g(BoBr.xi) = ePotPi = efoehux

Interpretation: (Exponentiate coeff. and report multiplicative change in mean
counts.)

o ePo: average count when x =0

o eP1: multiplicative change in the mean count per one unit change in x

For example: “Mean western toad juvenile abundance is reduced by a factor of
5.1 (95% Cl: 3.4, 10.8) per unit change in UV-B radiation.”

What was the estimate of §;?
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Binary data, 0 or 1 (aka logistic)

1 = success

0 = failure
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Binary data, 0 or 1 (aka logistic)

1 = success 1 = success

0 = failure p=2 0 = failure
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Binary data, 0 or 1 (aka logistic)

What happens when we want to relate p to a predictor x, where x can
be any value on the real line? How do we connect x to p € [0,1]?

e odds: ﬁ € [0,0)
e log odds: log(odds) = log (r”p) € (—o0,)

Moving between probability and log odds and relating to x:

o logit(p) = log (125) = x
» input to logit() is probability p, output is log odds x

X

o Inverting the above, we obtain p = ;&5 = inverse logit(x) =
expit(x)

> input to inverse logit() is x = log odds, output is probability p

e 193



-________________________________________________
Binary data, 0 or 1 (aka logistic)
Inverse logit mapping: input is log odds = log (tpp), output is
probability

—  —

n
~

a 0

log(odds)

e, 203



-______________________________________________
Binary data, 0 or 1 (aka logistic)

You have collected some binary data (y =1,0,0,1,1,0,1,...,1) at n
sites, along with a covariate x; measured at each location which you
believe is likely to affect these counts. Write a model regressing y on x.

@ Choose a specific stochastic and deterministic model.
@ Specify (vague) priors for your parameters.

© Write out the DAG and express posterior distribution as
proportional to joint distribution for your model.

@ Write the JAGS code for the model.

@ Interpret the coefficients of your model.

By



Bernoulli, 0 or 1 (aka logistic)

Stochastic model:

1
vilBo, Biind .Bernoulli(g(Bo, B1,xi)) i=1,..,n

Deterministic model:

ePo+Brxi
wi = pi = g(Po, Pr.xi) = ePotBxi 41
Priors:
Bo~? [Bo] =7
By~ 7 [Bi] =7

B —



Choosing reasonable flat priors on logit intercept
ePo
efo41-

Imagine for now that we have no predictor, so p; = U; =

If we use the same Normal(0, large variance) prior as before, what is the
induced prior for the success probability p?

betaO ~ Normal(0, var = 10000) betaO ~ Normal(0, var = 10000)
o
— — —
(=)
8 _
8 | S
[
o
8 z &
2 o =
a o 8 |
— L &
g ER
o 7 -
8. i /\ o I ]
S T T T
—-100 -50 [0} 50 100 0 0.2 0.4 0.6 0.8 1
logit(p) P
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Choosing reasonable flat priors on logit intercept

Now instead consider the prior By ~ Normal(0,2.7).

betaO ~ Normal(0, var = 2.7) betaO ~ Normal(O, var = 2.7)

0.25
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Choosing reasonable flat priors on logit effects

—

[Te)
~

o

.25

- - +-1SD
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-______________________________________________
Bernoulli, 0 or 1 (aka logistic)

Returning to case with a single predictor, the posterior distribution is:

[Bo.Br 3] o ][ Bemoulii(y; | g(Bo.Br.x))

i=1
xNormal(f | 0,2.7) Normal (B; | 0,2.7)
eﬁO"’ﬁlXi

g(ﬁO;BLXi) m

e 263



Bernoulli, 0 or 1 (aka logistic)
JAGS code for the model:

b0 ~ dnorm(0, 1/2.7)

bl ~ dnorm(0, 1/2.7)

for(i in 1:length(y)){
logit(p[i]) <- b0 + bl * x[i]
y[i] ~ dbern(p[i])

}

or

pli]l <- inv.logit(bO + bl * x[i])
y[i] ~ dbern(p[i])

B —



-______________________________________________
Bernoulli, 0 or 1 (aka logistic)

[Bo-Buy] = ][ Bemoulii(y; | &(Bo. r.x))

i=1
xNormal (S | 0,2.7) Normal (B | 0,2.7)

eﬁ0+ﬁlxi

p— V)= _Pi_ _BotBixi _ oBooBixi
Pi g(ﬁ(J?Bl?XI) BoBixi 4 1 <~ e eP0 e

1-pi
Interpretation: (Exponentiate coef. and report odds and odds ratios.)

o ePo: odds when x =0

@ &P : multiplicative change in the odds for a one unit change in x
For example: “the odds of detecting weevils in upland willow stems were 3.2
(95% ClI: 2.3, 4.8) times greater than detecting them in riparian willow stems.”
What was the estimate of 31?7 (Might be helpful to identify/define x;).
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Nonlinear regression

negative exponential: monomolecular:
f(x) =ae™ f(x)=a(1-e™)
a
a R
a
e 1\
b [ab
hyperbglic: Michaggs—Menten:
109=5% o rve
a a
b
a a

{Figures c/o Bolker, B. 2008. Ecological Models and Data in R. Princeton University Press, Princeton, NJ. USA.}
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Centering and standardizing

The remainder of the slides apply to all of the general linear models, but
we will use a simple linear model for Normally distributed data as an
example.



-________________________________________________
Centering predictor data

Rather than the usual linear model y; = Bo + B1x; + & where
g N(0,02), consider the following linear model:

y;=l30+ﬁ1(xi—>_<)+8;

where X = Y I'_; x; is the sample mean of the predictor.

Why complicate things?

@ To reduce autocorrelation in MCMC chain and speed convergence.
@ To make the intercept more easily interpretable.



-________________________________________________
Centering predictor data

n
HNormal(yi | g(ﬁo,ﬁl,xi)’&) X
i=1

Normal (o | 0,1000) Normal (f; | 0,1000) x
uniform (o | 0,100)
g(Bo:Bi,xi) = PBo+Pi(xi—X)

b0 ~ dnorm(0, .001)

bl ~ dnorm(0, .001)

sigma ~ dunif (0, 100)

tau <- 1/sigma”2

xBar <- mean(x)

for (i in 1:length(y)){
mu[i] <- bO + bl * (x[i] - xBar)
y[i]l ~ dnorm(muf[i], tau)

}

b0O_UC <- b0 - bl * xBar

e 323
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Exercise

What is the interpretation of By in this model?

What is the interpretation of B; in this model?



Recovering uncentered parameters

Centered Uncentered

40
40

30
I
30
I

20
20

10
I
10
I

-20 -10 0 10 20 -20 -10 0 10 20

X X
intercept = 20.31 intercept = 10.81

Bo = Bo—puix
Bi = B

@ For this to work properly, all the coefficients in the model must be added.
@ Slopes will not be the same if there is an interaction term or quadratic. In
these cases, back transforming is not simple.

B 7



Standardizing predictor data

Yi:Bo+l31(Xi_>_<>

Sx

where s, is sample standard deviation of predictor
2_ 1 212
(sx = sg Lima(xi —X)7)

Why complicate things?

@ To reduce autocorrelation in MCMC chain and speed convergence.
@ To make the intercept more easily interpretable.
@ To make coefficients more easily comparable



-________________________________________________
Standardizing predictor data

R

n
HNormal(y,- | g(ﬁo,ﬁl,xi)’ffz) X
=1

Normal (o | 0,1000) Normal (f; | 0,1000) x
uniform (o | 0,100)

g(ﬁo,ﬁhx,-) — ﬁo_l_ﬁl(xi—)‘()

Sx

[ﬂo,ﬁl,GW]

b0 ~ dnorm(0, .001)

bl ~ dnorm(0, .001)

sigma ~ dunif (0, 100)

tau <- 1/sigma”2

xBar <- mean(x)

xSD <- sd(x)

for (i in 1:length(y)){
mul[i] <- b0 + bl * ((x[i] - xBar)/xSD
y[i] ~ dnorm(mu[i], tau)

¥
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Recovering unstandardized parameters

yi = 50+51(Xi_)_(>

Sx
B1  Bix
= ot P P
S Sy
= Bo+Bixi
. Prx
Bs = Bo— .
. 1
Bi = 5

@ This only works if there are not squared values or interactions.
@ It is fine to make predictions using y; = Bo + B1 X"S:X and plot y; against x;
and the observed y;

0 R A T



lognormal, data continuous and > 0 (log link)

[[30,[31,6 ly] o< lflllognormal(y,- | log(g(ﬁo,ﬁl,x,-)),62)

xNormal (B | 0,1000) Normal (f; | 0,1000)
xuniform(c | 0,5)

g(ﬁo,lﬁ,x,-) —  PotBixi
Talk about the interpretation of o.

b0 ~ dnorm(0, .001)

bl ~ dnorm(0, .001)

sigma ~ dunif(0, 5)

tau <- 1/sigma”2

for(i in 1:length(y)){
muli] <- exp(b0 + bl * x[i])
y[i] ~ dlnorm(log(mul[il), tau)

}

By w7



lognormal, data continuous and > 0 (not log link)

[Bo,B1,0|y] e ﬁlognormal()’i|10g(g(/30,ﬁ17}/i—1))70'2)
=2

xNormal (S | 0,1000) Normal(B; | 0,1000)
xuniform(d | O,5)uniform(y1 | 1,1E6)
g(Bo,Br,yi-1) = yiiePotPuia

b0 ~ dnorm(0, .001)

bl ~ dnorm(0, .001)

sigma ~ dunif (0, 5); tau <- 1/sigma”2

y[1] ~ dunif(1, 1E6)

for(i in 2:length(y)){
muli] <- y[i-1] * exp(bO + bl * y[i-1])
y[i] ~ dlnorm(log(mu[i]), tauw)

}
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