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» Overview

> Model types with examples
» discrete time

> single state
P> multiple states

> continuous time (briefly)
Autocorrelation
Break to start on lab problem
Forecasting

Forecasts for decision analysis
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Continue lab problem
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Overview

Dynamic hierarchical models (aka state space models)

[Yt‘ 9d7zt]
[Zt| 9p7 Zt—l]

The idea is simple. We have a stochastic model of an unobserved,
true state (z;) and a stochastic model that relates our observations
(y¢) to the true state.
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Overview

State of System (z or )

) - . .
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Overview

A broadly applicable approach to modeling dynamic
processes in ecology

[Z, eprocess, edata | y] o<
T

H [yz’edatayzt] [Zt|9pmcessazt—l] [epmcess] [Gdata] s [Z‘yl]
=2

» Data from monitoring studies enter through the likelihood
» Data from process studies enter through the priors

» A natural approach to combining understanding accumulated
at multiple scales of time and space and for including different

types of uncertainty.
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Overview

Sources of uncertainty in state space models

Process uncertainty Observation uncertainty
» Failure to perfectly » Failure to perfectly observe
represent process process
» Propagates in time » Does not propagate
» Decreases with model » Sampling uncertainty decreases
improvement with increased sampling effort.
» Basis for forecasting » Observation (calibration)

uncertainly decreases with
improved instrumentation,
calibration, etc.
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Overview

When can we separate process variance from observation
variance?’

> Replication of the observation for the latent state with
sufficient n

> Calibration model with properly estimated prediction variance

> Strongly differing “structure” in process and observation
models

» We may not need to separate them—sometimes the observed
state and the true state are the same.
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Discrete time models

General joint and posterior distribution for single state model

Deterministic model = g(0rocess, 2r—1,X—1)
[Za 6process7 0 4ata; G[?) Gg%b’] o< H [yt|edataa 2ty Ggﬂ
=2
2
X [Zt |g(6process,ztfl,xt71)7 Gp ]

X [Zl |y1 5 63] [eprocess] [edata] [sz] [63]

~
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Data
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Fig. 2.. The orientation of the base-line and of the random transects in the May 1971 sample count. Shading shows approximate
positions of the main wildebeest herds.
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Discrete time models

Serengeti wildebeest model

g (B,szl ’xtil) = Ztile(ﬁ()""ﬁlzr—l‘i‘ﬁzxt—l+BSZt—1xt—l)At

[Zaﬁyﬁ,ﬂ)’]“ H [}’z Zlay'Sdt:|
t=Vey.i
datamodel
48
x I_]2 [21lg (B.z—1.%-1), 0] x [Bo] [B1] [B2] [B5] [05] [z1 1]

parameter models
process model

P y is a vector of years with non missing data. It is the mean of

counts on multiple transects; y.sd, is the corresponding vector of

standard deviations of the mean counts.

yr ~ normal(z;,y.sd;)

z; ~ lognormal (log (¢ (B,z-1,%-1)) ,07)

Bo ~ normal (.2347 .1362) informative prior

Bici 2,3 ~ normal(0, 1000)

o, ~ gamma (.001,.001)
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Discrete time models

Exercises

» Draw the DAG
» Interpret the coefficients

» If covaraites are not transformed
» [f covariates are centered
» |f covariates are standardized

» What is this Ar? Why do we need it in the model?
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What is

t=vVeyi?
t=V €y.i = all tin the vector y.i. For example:

L[]

Gl W N
QOO O N

12
It is a vector of non-missing values for years. Use the double
bracket index trick to match the y; to the z, e.g.

for(i in 1: length(y.i){
yly.1[i]1]1” dlnorm(z[y.i[il,y.sd[y.i[i]1])

}
Or you could simply add NA for the missing years population
estimates if you have values for the rainfall covariates for all years
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Discrete time models

Posterior predictive check
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Discrete time models

Marginal posteriors

Black: with informative priors on fy,Grey: flat prior on fy,Dotted:
informative prior on fy,Dashed: vague priors

A e

Dy
LI I )

L)

Densiy
2

Dy
oo A E

04 -—02 oo o=z o4 o6 o8  —8e-os —4e-04a  0ov00 ac-o04

0005

ety

0000 0001 0002 003 0004

o # (% 1000)

Bayesian Dynamic Models, June 12, 2024 14 / 44



Discrete time models

Example of using allometric scaling for informed priors

Hobbs, N. T. 2024. A general, resource-based explanation for
density dependence in populations of large herbivores. Ecological
Monographs. http://doi.org/10.1002/ecm.1600
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Discrete time models

Deterministic matrix model

Process model:

71 71

22 22

z =0 (1)
Zn t Zn t—1

where @ is an n X n matrix governing the transitions among states. The
product @z, defines a system of n linked, difference equations. We can

learn a great deal about the dynamics of the system from analyzing the
properties of @, its eigenvalues, eignvectors, characteristic polynomials,

etc. We can make inference on these using derived quantities.
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Discrete time models

Posterior and joint distribution

[Z7®> edata|Y] o<
T

H Yt|edatavzt Zt|® z,_ 1 @)] edata [Z1|YI]
=2
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Discrete time models

Example: Ann Raiho matrix model!

’ state \ definition

ny | The number of juvenile deer, aged 6 months on their
first census

ny | The number of adult female deer, aged 18 months and
older

n3 | The number of adult male deer, aged 18 months and
older

IA. Raiho, M. B. Hooten, S. Bates, and N. T. Hobbs. Forecasting the effects of
fertility control on overabundant ungulates. PLOS ONE, 10(12):e0143122.

doi:10.1371/journal.pone.0143122, 2015.
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Discrete time models

f = number of recruits per female surviving to census

¢; = probability that a juvenile (aged 6 months) survives to 18 months
¢®; = annual survival probabilty of adult females

¢ = annual survival probability of adult males

m = proportion of juveniles surviving to adults that are female

0 (Pd%f 0
A = me; ¢s O
(I-m¢ 0 ¢

n, — An,_;.
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Discrete time models

The posterior and joint distribution

census.mean _census.sd vyclassification
¢7m7f7N7 Gpﬂp ’y Jy 7Y
——

elements of £
T
[ [ multivariate normal (log(n,)|log (Am,—),Z)
=2

g

process model

% H normal y;:ensus mean| Z i,y census sd

data model 1
/

. . niy nyt n3;
« multinomial ytclassﬁlcatlon | Zy”’ . 5
Z njt 72521 njt, 25:1 nj;
data model 2
X priors
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Discrete time models

Models of high dimension can be fit with sufficient data

Novernber 2015 MODELING OF BISON POPULATION DYNAMICS @

) susoptie
) Exoses
[ p—

Births and transmission to juveniles Infoctious, vaccinatod

Spafall = )

Recovered

Sonlet =21 = &)

Sl = V0 = 0,)

Saafy(1 =91 = 6,) + (1 =1~ 4)
Sanfibn

SonfeV + by = Vi)

SV + &y

Sl UV + 4~ vy,
Survival and transmission to yearlings and adults - 40) refi=tg
Sl = M1 = 4,) FRTRR (P S °
g b
St~ m) Sanf Sanbo e

San
o u Suon
-

i 4 e et s o e i o pcn, s of oL s i th Vel b
popultion. Suge s, rprests scronceaiv adult female that have b vaccinaed. S s vacoated adult

Ot ages an defned
i Tube 2 ad paracits s deind 1 Tale . To o T h probaity o ividuai ca it

e pomanionl et e o vl o Bt i s s vseavon. T
w.mx Vecor () alows annualremoval o b ichided inthe mode (4. 3 Rowener, s ers st ai 21 fr he vacination

ayesian Dynamic Models, June 12, 2024 21 / 44



Continuous time models

Systems of differential equations

dz;

— = kiz1—k

i 121 —K22122
dzp

— =—k ok

r 321 + 0K2Z122
dZ3 . k4Z3

dr ks +z3

Implementing the process model usually needs a numerical solver to
align the states with the data.
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Continuous time models

Continuous time models

> Must update states at discrete intervals to match with data

P> To estimate states:
» Use analytical solutions to ODE system if available.
» For models without analytical solutions:
» STAN has superb ODE solver. 2
> R'’s Nimble package 3 allows you to embed functions in JAGS.
A sturdy ODE solver (Runge-Kutta IV) can be written in 6-8
lines of code.
» Write your own MCMC sampler with embedded numerical
solver (e.g. 1soda() in R). 4

’https://mc-stan.org/events/stancon2017-notebooks/
stancon2017-margossian-gillespie-ode.html
Shttps://r-nimble.org/
4See: Campbell, E. E., W. J. Parton, J. L. Soong, K. Paustian, N. T. Hobbs, and M. F. Cotrufo.
2016. Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the

Litter Decomposition and Leaching (LIDEL) model. Soil Biology & Biochemistry 100:160-174.
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Autocorrelation

The problem:
Assume for simplicity that the state is observed perfectly, i.e,
v; = z;. The simplest model of the change in state with time is

=0y 1+ & (2)

where & ~ normal(0,62). We might introduce effects of predictor
variables using

yi =8(0,%) +ay1 +&. (3)
What if & depends on previous errors, that is, e, = h(e;—1)? In this
case, there is structural variation in the data, also called temporal
dependence. The assumptions of independent errors does not hold.
We have two choices:

1. Improve g(0,x,) so that the deterministic model accounts for
the temporal dependence via the covariates or by increasing
the lag in state variable, i.e. y, = g(0,x;) + 0y, 1+ ¥y, 2+ &.

2. Model the temporal dependence in the errors directly.
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Autocorrelation

Detecting temporal dependence

The empirical autocorrelation function (ACF):

Yii(&—E)(irg—8)
?’:1(81' —£)?

where 7 is the number of steps in the time series and g is the “lag,’
the number of steps examined for temporal dependence,

-1 S pg S 1

The notation ACF(g) means the correlation between points
separated by g time periods.

Pg =
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ACF plots
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ACF in MCMC

M =g(0,2-1,%-1)
1. Compute residuals at each MCMC iteration, egk) :y,—,ut(k)
2. Sample from MCMC output for eﬁ"), use acf () function in R
to find posterior distributions of p,. Make statements like

“Mean autocorrelation was .21 (BCl = .23,.18) at lag 3,
revealing minimal temporal dependence in the residuals.”
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Bayesian forecasting future states z’

’ !
[ZT—H |Y] = / / / [ZT-H |z7 eproces37 Y] [Z7 eprocessa edatt
SN—— 0,..6pJzy... Jzp N——
predictive process distribution posterior distribut

State of System (z or 2)

Time
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Predictive process distribution

The MCMC output:

i 6, 6 63
142 33 203 zip zi2 o a7 Zdgg Do o Arer
/
2 41 23 185 22,1 222 - 22T Z/27T+1 Z,2T+2 N ZIZ,T+F
3 .46 3.1 166 z31 z32 -+ 23T z’3’T+1 Z/3,T+2 Z/3T+,F
no 39 34 221z 2 Wl ZTyrer Inre o ZaTiF
n = number of iterations
T = final time with data
F = number of forecasts beyond data
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Posterior and joint distribution with forecasts

M= g<epmcess,zt— 1,Xr—1 )
[Z, eprocess,edata |Y] o<

T T+F
H [ytledataazt] H [Zt’.ut] [eprocesx, edata] [Zl]
=2 =2
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JAGS code for posterior and joint distributions

{Z’AGPZ\Y} = I1 {y; z,A,y,xd,}
Viey.i
—
datamodel
48 ) s
x 1 [arle (Bzi1.xi1) . 03 | x Bol B1] (B 1Bs] [0 ] 21)
=2 —
S——
processmodel parametermodels
modelq{
#Priors

b[1] ~ dnorm(.234,1/.13672)

for(j in 2:n.coef){

b[jl ~ dnorm(0,.0001)

¥

tau.p ~ dgamma(.01,.01)

sigma.p <- 1/sqrt(tau.p)

z[1] ~ dnorm(N.obs[1],tau.obs[1]) #this must be treated as prior so that you have z[t-1]
##Process model

for(t in 2:(T+F)){

mu[t] <- log(z[t-1]*exp(b[1] + b[2]*z[t-1] + b[3]*x[t] +b[4]*x[t]*z[t-1]))
z[t] ~ dlnorm(mu[t], tau.p)

¥

#Data model
for(j in 2:n.obs){
N.obs[j] ~ dnorm(z[index[j]],tau.obs[j]) #index to match z[t] with data

}#end of model
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Coding tips

Posterior predictive checks for time series data

Test statistic:
Ly | (@)
— Ve — Y1 4
T—1 =

Conventional statistics are also used (mean, CV, discrepancy
statistic for the y;.

Reilly, C., A. Gelman, and J. Katz, 2001. Poststratification without Population Level
Information 731 on the Poststratifying Variable, with Application to Political Polling.
Journal of the American 732 Statistical Association 96:1-11.
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Coding tips

Posterior predictive checks and test for autocorrelation

#Derived quantities for model evaluation

for(i in 1:n.obs){

#for autocorrelation test
epsilon.obs[i] <- N.obs[i] - z[index[i]]
# simulate new data

N.new[i] ~ dnorm(z[index[i]],tau.obs[i])

sqli] <- (N.obs[i] - z[index[i]] )~2
sq.new[i] <-(N.new[i] - z[index[i]]) -2
}
fit <- sum(sql[])
fit.new <- sum(sq.new[])
pvalue <-step(fit.new-fit)
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Coding tips

Forecasting and decision analysis

The fundamental problem of management:

What actions can we take today that will allow us to meet goals
for the future?
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Predictive process distribution of 7/
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Objective: reduce state below a target

Objective

Probability density

Future state z'

Bayesian Dynamic Models, June 12, 2024 36 / 44



Objective: maintain state within acceptable range

Range

Probability density

Future state z'
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Objective: increase state above a target

Otjective

Probability density

Future state 2'
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Action: do nothing

Otjective

Probability density

Future state 2'
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Probability density

Coding tips

Action: implement managment

Otjective

Management

L
-
)

N |

N

P - -

Future state of system, '
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Net effect of management

Objective
% P
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Net effect of management

Objective
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Coding tips

Papers using forecasting relative to goals

> Ketz, A. C., T. L. Johnson, R. J. Monello, and N. T. Hobbs.
2016. Informing management with monitoring data: the value
of Bayesian forecasting. Ecosphere 7:¢01587-n/a.

» Raiho, A. M., M. B. Hooten, S. Bates, and N. T. Hobbs.
2015. Forecasting the Effects of fertility control on
overabundant ungulates: white-tailed deer in the National
Capital Region. PLoS ONE 10.

» Hobbs, N. T., C. Geremia, J. Treanor, R. Wallen, P. J. White,
M. B. Hooten, and J. C. Rhyan. 2015. State-space modeling
to support management of brucellosis in the Yellowstone bison
population. Ecological Monographs 85:3-28.
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Coding tips

More on forecasting

» M. C. Dietz. Ecological Forecasting. Princeton University
Press, Princeton New Jersey, USA, 2017.

» Workshop July 28 - August 2
https://ecoforecast.wordpress.com/summer-course/
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