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Roadmap

▶ Overview
▶ Model types with examples

▶ discrete time
▶ single state
▶ multiple states

▶ continuous time (briefly)

▶ Autocorrelation
▶ Break to start on lab problem
▶ Forecasting
▶ Forecasts for decision analysis
▶ Continue lab problem
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Dynamic hierarchical models (aka state space models)

[yt|θd,zt]

[zt|θp,zt−1]

The idea is simple. We have a stochastic model of an unobserved,
true state (zt) and a stochastic model that relates our observations
(yt) to the true state.
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A broadly applicable approach to modeling dynamic
processes in ecology

[z,θprocess,θdata|y] ∝

T

∏
t=2

[yt|θdata,zt] [zt|θprocess,zt−1] [θprocess] [θdata] , [z|y1]

▶ Data from monitoring studies enter through the likelihood
▶ Data from process studies enter through the priors
▶ A natural approach to combining understanding accumulated

at multiple scales of time and space and for including different
types of uncertainty.
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Sources of uncertainty in state space models

Process uncertainty

▶ Failure to perfectly
represent process

▶ Propagates in time
▶ Decreases with model

improvement
▶ Basis for forecasting

Observation uncertainty

▶ Failure to perfectly observe
process

▶ Does not propagate
▶ Sampling uncertainty decreases

with increased sampling effort.
▶ Observation (calibration)

uncertainly decreases with
improved instrumentation,
calibration, etc.
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When can we separate process variance from observation
variance?

▶ Replication of the observation for the latent state with
sufficient n

▶ Calibration model with properly estimated prediction variance
▶ Strongly differing “structure” in process and observation

models
▶ We may not need to separate them–sometimes the observed

state and the true state are the same.

Bayesian Dynamic Models, June 12, 2024 7 / 44



Overview Discrete time models Continuous time models Autocorrelation Forecasting Coding tips

General joint and posterior distribution for single state model

Deterministic model = g(θθθ process,zt−1,xt−1)[
z,θθθ process,θθθ data,σ

2
p ,σ

2
d |y
]

∝

T

∏
t=2

[
yt|θθθ data,zt,σ

2
d
]

×
[
zt|g(θθθ process,zt−1,xt−1),σ

2
p
]

×[z1|y1,σ
2
d ][θprocess][θθθ data][σ

2
p ][σ

2
d ]
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Data
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Serengeti wildebeest model

g(βββ ,zt−1,xt−1) = zt−1e(β0+β1zt−1+β2xt−1+β3zt−1xt−1)∆t[
z,,,βββ ,σ2

p |y
]

∝ ∏
t=∀∈y.i

[
yt

∣∣∣∣ zt,y.sdt

]
︸ ︷︷ ︸

datamodel

×
48

∏
t=2

[
zt|g(βββ ,zt−1,xt−1) ,σ

2
p
]

︸ ︷︷ ︸
processmodel

× [β0] [β1] [β2] [β3]
[
σ

2
p
]
[z1|y1]︸ ︷︷ ︸

parametermodels

▶ y is a vector of years with non missing data. It is the mean of
counts on multiple transects; y.sdt is the corresponding vector of
standard deviations of the mean counts.

▶ yt ∼ normal(zt,y.sdt)
▶ zt ∼ lognormal

(
log(g(βββ ,zt−1,xt−1)) ,σ

2
p
)

▶ β0 ∼ normal
(
.234, .1362

)
informative prior

▶ βi∈1,2,3 ∼ normal(0,1000)
▶ σ2

p ∼ gamma(.001, .001)
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Exercises

▶ Draw the DAG
▶ Interpret the coefficients

▶ If covaraites are not transformed
▶ If covariates are centered
▶ If covariates are standardized

▶ What is this ∆t? Why do we need it in the model?
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What is
t = ∀ ∈ y.i ?
t = ∀ ∈ y.i = all t in the vector y.i. For example:

i y.i

1 2
2 5
3 6
4 8
5 12

It is a vector of non-missing values for years. Use the double
bracket index trick to match the yt to the zt, e.g.

for(i in 1: length(y.i){
y[y.i[i]]~ dlnorm(z[y.i[i],y.sd[y.i[i]])

}
Or you could simply add NA for the missing years population
estimates if you have values for the rainfall covariates for all years
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Posterior predictive check
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Bayesian P value =  0.85
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Marginal posteriors
Black: with informative priors on β0,Grey: flat prior on β0,Dotted:
informative prior on β0,Dashed: vague priors
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Example of using allometric scaling for informed priors

Hobbs, N. T. 2024. A general, resource-based explanation for
density dependence in populations of large herbivores. Ecological
Monographs. http://doi.org/10.1002/ecm.1600
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Deterministic matrix model

Process model: 
z1
z2
z
.

zn


t

= ΘΘΘ


z1
z2
z3
.

zn


t−1

(1)

where ΘΘΘ is an n×n matrix governing the transitions among states. The
product ΘΘΘzt defines a system of n linked, difference equations. We can
learn a great deal about the dynamics of the system from analyzing the
properties of ΘΘΘ, its eigenvalues, eignvectors, characteristic polynomials,
etc. We can make inference on these using derived quantities.
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Posterior and joint distribution

[z,ΘΘΘ,θθθ data|Y] ∝

T

∏
t=2

[yt|θθθ data,zt] [zt|ΘΘΘ,zt−1] [ΘΘΘ]]], [θθθ data][z1|y1]
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Example: Ann Raiho matrix model1

state definition
n1 The number of juvenile deer, aged 6 months on their

first census
n2 The number of adult female deer, aged 18 months and

older
n3 The number of adult male deer, aged 18 months and

older

1A. Raiho, M. B. Hooten, S. Bates, and N. T. Hobbs. Forecasting the effects of
fertility control on overabundant ungulates. PLOS ONE, 10(12):e0143122.
doi:10.1371/journal.pone.0143122, 2015.
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f = number of recruits per female surviving to census
φj = probability that a juvenile (aged 6 months) survives to 18 months
φd = annual survival probabilty of adult females
φb = annual survival probability of adult males
m = proportion of juveniles surviving to adults that are female

A =

 0 φ
1
2

d f 0
mφj φd 0

(1−m)φj 0 φb


nt = Ant−1.
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The posterior and joint distributionφφφ ,m, f ,N, σσσp,ρρρ︸ ︷︷ ︸
elements of ΣΣΣ

|ycensus.mean,ycensus.sd,Yclassification

 ∝

T

∏
t=2

multivariate normal(log(nt)| log(Atnt−1) ,ΣΣΣ)︸ ︷︷ ︸
process model

×
T

∏
t=1

normal

(
ycensus.mean

t |
3

∑
i=1

ni,t,ycensus.sd
t

)
︸ ︷︷ ︸

data model 1

×multinomial

(
yclassification

t |

(
3

∑
i=1

yi,t,
n1,t

∑
3
i=1 ni,t

n2,t

,∑3
i=1 ni,t,

n3,t

∑
3
i=1 ni,t

)′)
︸ ︷︷ ︸

data model 2

×priors

You have capture mark recapture data on adult and juvenile
survival. How could these data be incorporated in this model?
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Models of high dimension can be fit with sufficient data
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Systems of differential equations

dz1

dt
= k1z1 − k2z1z2

dz2

dt
=− k3z1 +αk2z1z2

dz3

dt
=

k4z3

k5 + z3

Implementing the process model usually needs a numerical solver to
align the states with the data.
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Continuous time models

▶ Must update states at discrete intervals to match with data
▶ To estimate states:

▶ Use analytical solutions to ODE system if available.
▶ For models without analytical solutions:

▶ STAN has superb ODE solver. 2

▶ R’s Nimble package 3 allows you to embed functions in JAGS.
A sturdy ODE solver (Runge-Kutta IV) can be written in 6-8
lines of code.

▶ Write your own MCMC sampler with embedded numerical
solver (e.g. lsoda() in R). 4

2https://mc-stan.org/events/stancon2017-notebooks/
stancon2017-margossian-gillespie-ode.html

3https://r-nimble.org/
4See: Campbell, E. E., W. J. Parton, J. L. Soong, K. Paustian, N. T. Hobbs, and M. F. Cotrufo.

2016. Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the

Litter Decomposition and Leaching (LIDEL) model. Soil Biology & Biochemistry 100:160-174.
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The problem:
Assume for simplicity that the state is observed perfectly, i.e,
yt = zt. The simplest model of the change in state with time is

yt = αyt−1 + εt (2)

where εt ∼ normal(0,σ2). We might introduce effects of predictor
variables using

yt = g(θθθ ,xt)+αyt−1 + εt. (3)

What if εt depends on previous errors, that is, et = h(et−1)? In this
case, there is structural variation in the data, also called temporal
dependence. The assumptions of independent errors does not hold.
We have two choices:

1. Improve g(θθθ ,xt) so that the deterministic model accounts for
the temporal dependence via the covariates or by increasing
the lag in state variable, i.e. yt = g(θθθ ,xt)+αyt−1 + γyt−2 + εt.

2. Model the temporal dependence in the errors directly.
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Detecting temporal dependence

The empirical autocorrelation function (ACF):

ρg =
∑

n−g
i=1 (εi − ε̄)(εi+g − ε̄)

∑
N
i=1(εi − ε̄)2

where n is the number of steps in the time series and g is the “lag,”
the number of steps examined for temporal dependence,
−1 ≤ ρg ≤ 1
The notation ACF(g) means the correlation between points
separated by g time periods.
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ACF plots
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ACF in MCMC

µt = g(θθθ ,zt−1,xt−1)

1. Compute residuals at each MCMC iteration, e(k)t = yt −µ
(k)
t

2. Sample from MCMC output for e(k)t , use acf() function in R
to find posterior distributions of ρg. Make statements like
“Mean autocorrelation was .21 (BCI = .23,.18) at lag 3,
revealing minimal temporal dependence in the residuals.”
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Bayesian forecasting future states z′

[
z′T+1|y

]︸ ︷︷ ︸
predictive process distribution

=
∫

θ1...θP

∫
z1...

∫
zT

[
z′T+1|z,θθθ process,y

]
[z,θθθ process,θθθ data|y]︸ ︷︷ ︸
posterior distribution

dz...dztdθ1...dθP
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Predictive process distribution

The MCMC output:

i θ1 θ1 θ3
1 .42 3.3 20.3 z1,1 z1,2 · · · z1,T z′1,T+1 z′1,T+2 . . . z′1,T+F
2 .41 2.3 18.5 z2,1 z2,2 · · · z2,T z′2,T+1 z′,2T+2 . . . z′2,T+F
3 .46 3.1 16.6 z3,1 z3,2 · · · z3,T z′3,T+1 z′3,T+2 . . . z′3T+,F
...

...
...

...
...

...
...

...
...

...
...

...
n .39 3.4 22.1 zn,1 zn,2 · · · zn,T z′n,T+1 z′n,T+2 . . . z′n,T+F

n = number of iterations
T = final time with data
F = number of forecasts beyond data

Bayesian Dynamic Models, June 12, 2024 29 / 44



Overview Discrete time models Continuous time models Autocorrelation Forecasting Coding tips

Posterior and joint distribution with forecasts

µt = g(θθθ process,zt−1,xt−1)

[z,θθθ process,θθθ data|y] ∝

T

∏
t=2

[yt|θθθ data,zt]
T+F

∏
t=2

[zt|µt] [θθθ process,θθθ data] [z1]
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JAGS code for posterior and joint distributions
[
z,,,βββ ,σ2

p |y
]

∝ ∏
∀t∈y.i

[
yt

∣∣∣∣ zt ,y.sdt

]
︸ ︷︷ ︸

datamodel

×
48

∏
t=2

[
zt |g(βββ ,zt−1,xt−1) ,σ

2
p

]
︸ ︷︷ ︸

processmodel

× [β0] [β1] [β2 ] [β3 ]
[
σ

2
p

]
[z1 ]︸ ︷︷ ︸

parametermodels

model{
#Priors
b[1] ~ dnorm(.234,1/.136^2)
for(j in 2:n.coef){
b[j] ~ dnorm(0,.0001)
}
tau.p ~ dgamma(.01,.01)
sigma.p <- 1/sqrt(tau.p)
z[1] ~ dnorm(N.obs[1],tau.obs[1]) #this must be treated as prior so that you have z[t-1]
##Process model
for(t in 2:(T+F)){
mu[t] <- log(z[t-1]*exp(b[1] + b[2]*z[t-1] + b[3]*x[t] +b[4]*x[t]*z[t-1]))
z[t] ~ dlnorm(mu[t], tau.p)
}

#Data model
for(j in 2:n.obs){
N.obs[j] ~ dnorm(z[index[j]],tau.obs[j]) #index to match z[t] with data
}
}#end of model
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Posterior predictive checks for time series data

Test statistic:
1

T −1

T

∑
t=2

| yt − yt−1 | (4)

Conventional statistics are also used (mean, CV, discrepancy
statistic for the yt.

Reilly, C., A. Gelman, and J. Katz, 2001. Poststratification without Population Level
Information 731 on the Poststratifying Variable, with Application to Political Polling.
Journal of the American 732 Statistical Association 96:1–11.
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Posterior predictive checks and test for autocorrelation

#Derived quantities for model evaluation

for(i in 1:n.obs){
#for autocorrelation test

epsilon.obs[i] <- N.obs[i] - z[index[i]]

# simulate new data
N.new[i] ~ dnorm(z[index[i]],tau.obs[i])

sq[i] <- (N.obs[i] - z[index[i]] )^2
sq.new[i] <-(N.new[i] - z[index[i]]) ^2
}
fit <- sum(sq[])
fit.new <- sum(sq.new[])
pvalue <-step(fit.new-fit)
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Forecasting and decision analysis

The fundamental problem of management:
What actions can we take today that will allow us to meet goals
for the future?
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Predictive process distribution of z′
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Papers using forecasting relative to goals

▶ Ketz, A. C., T. L. Johnson, R. J. Monello, and N. T. Hobbs.
2016. Informing management with monitoring data: the value
of Bayesian forecasting. Ecosphere 7:e01587-n/a.

▶ Raiho, A. M., M. B. Hooten, S. Bates, and N. T. Hobbs.
2015. Forecasting the Effects of fertility control on
overabundant ungulates: white-tailed deer in the National
Capital Region. PLoS ONE 10.

▶ Hobbs, N. T., C. Geremia, J. Treanor, R. Wallen, P. J. White,
M. B. Hooten, and J. C. Rhyan. 2015. State-space modeling
to support management of brucellosis in the Yellowstone bison
population. Ecological Monographs 85:3-28.
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More on forecasting

▶ M. C. Dietz. Ecological Forecasting. Princeton University
Press, Princeton New Jersey, USA, 2017.

▶ Workshop July 28 - August 2
https://ecoforecast.wordpress.com/summer-course/
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