Inference from a Single Model

Alison Ketz

Slides adapted from Tom Hobbs, Chris Che-Castaldo, Mary B. Collins

Х

 $g(\beta, x_i) = \beta_0 + \beta_1 x_i$ $[\beta, \sigma^2 | \mathbf{y}] \propto \prod_{i=1}^{15} \operatorname{normal} \left(y_i | g(\beta, x_i), \sigma^2 \right) \operatorname{normal} \left(\beta_0 | 0, 1000 \right) \times \operatorname{normal} \left(\beta_1 | 0, 1000 \right) \times \operatorname{inverse \ gamma} \left(\sigma^2 | .001, .001 \right)$

$$g(\beta, x_i) = \beta_0 + \beta_1 x_i$$

$$[\beta, \sigma^2 | \mathbf{y}] \propto \prod_{i=1}^{15} \operatorname{normal} (y_i | g(\beta, x_i), \sigma^2) \operatorname{normal} (\beta_0 | 0, 1000) \times \operatorname{normal} (\beta_1 | 0, 1000) \times \operatorname{inverse \ gamma} (\sigma^2 | .001, .001)$$

model {

```
# priors
beta0 ~ dnorm(0,.001)
beta1 ~ dnorm(0,.001)
tau ~ dgamma(.001, .001)
sigma_sq <- 1/tau</pre>
```

```
# likelihood
for(i in 1:n) {
    mu[i] <- beta0 + beta1*x[i]
    y[i] ~ dnorm(mu[i], tau)
}</pre>
```

Coda summary output includes posterior means and credible intervals > summary(jc)

```
Iterations = 35001:45000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

    Empirical mean and standard deviation for each variable,

   plus standard error of the mean:
                    SD Naive SE Time-series SE
          Mean
bØ
         10.486 1.3992 0.013992
                                     0.032676
b1
         1.227 0.1239 0.001239
                                     0.002812
sigma.sg 9.065 4.4158 0.044158
                                     0.055806
Quantiles for each variable:
          2.5%
                  25%
                         50%
                                75% 97.5%
bØ
         7,6559 9,607 10,489 11,371 13,264
b1
        0.9832 1.148 1.226 1.305 1.476
sigma.sg 3.9819 6.206 8.054 10.666 20.128
```

Naive SE: The standard error assuming i.i.d. samples, calculated as SD/sqrt(K) where K = # of samples > summary(jc)

```
Iterations = 35001:45000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

    Empirical mean and standard deviation for each variable,

   plus standard error of the mean:
                    SD Naive SE Time-series SE
           Mean
         10.486 1.3992 0.013992
b0
                                      0.032676
b1
         1.227 0.1239 0.001239
                                      0.002812
sigma.sq 9.065 4.4158 0.044158
                                      0.055806
Quantiles for each variable:
           2.5%
                  25%
                         50%
                                75% 97.5%
b0
         7,6559 9,607 10,489 11,371 13,264
b1
         0.9832 1.148 1.226 1.305 1.476
sigma.sq 3.9819 6.206 8.054 10.666 20.128
```

Time-series SE: The standard error adjusted for autocorrelation, often calculated using the effective sample size.

> summary(jc)

```
Iterations = 35001:45000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
```

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time	e-series	SE
b0	10.486	1.3992	0.013992		0.0326	76
b1	1.227	0.1239	0.001239		0.0028	12
sigma.sq	9.065	4.4158	0.044158		0.0558	06
2. Quant	iles fo	r each y	variable:			
	2.5%	25%	50%	75%	97.5%	
	-				43 364	

b0	7.6559	9.607	10.489	11.371	13.264
b1	0.9832	1.148	1.226	1.305	1.476
siama.sa	3,9819	6.206	8,054	10,666	20.128

Trace of b0

Density of b0

A simple example: Linear Regression

Output from JAGS

14000

20

0

6000

Output from JAGS

k	5001	5002	5003	5004	5005	 9996	9997	9998	9999	10000
β_0	9.84	10.9	10.6	10.7	11.9	 12.5	9.84	11.1	10.9	11.7
β_1	1.38	1.22	1.25	1.12	1.14	 1.04	1.23	1.27	1.06	1.14
σ^2	10.8	6.32	4.96	4.57	5.76	 12.4	9.77	8.19	6.88	13.1

A simple example: Linear Regression Marginal Distributions of Parameters

Monte Carlo Integration Marginal Distributions of Parameters

Use the row for each parameter, for example, β_0 to approximate moments of its marginal posterior distribution. For example, the mean is given analytically by the integral

$$\begin{aligned} [\beta_0 | \mathbf{y}] &= \int_{\beta_1} \int_{\sigma^2} [\beta_1, \beta_0, \sigma^2 | \mathbf{y}] d\beta_1 d\sigma^2 \\ \mathrm{E} \left(\beta_o | \mathbf{y}\right) &= \int_{\beta_o} \beta_0 \left[\beta_0 | \mathbf{y}\right] d\beta_0, \end{aligned}$$

which is approximated by

$$\mathbf{E}\left(\beta_{0}|\mathbf{y}\right) \approx \frac{1}{K} \sum_{k=1}^{K} \beta_{0}^{(k)}.$$

A simple example: Linear Regression Marginal Distributions of Parameters

Another marginal posterior distribution of the moment of a distribution, for example, the variance, σ^2 , is given analytically by the integral

$$\operatorname{var}(\beta_0 | \mathbf{y}) \approx \frac{\sum_{k=1}^{K} \left(\beta_0^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \beta_0^{(k)} \right)^2}{K}$$

We obtain other statistics (e.g., medians, quantiles, credible intervals, highest posterior density intervals) by applying the appropriate function to the row.

Bayesian Credible Intervals

- 95% equal-tailed Bayesian credible intervals
 - . Convention from frequentist statistics
 - (Lower quantile, Upper quantile) = (.025,.975)
 - · works for symmetric marginal posteriors
 - · expected in journals

 Highest posterior density interval (board)

```
Median height of willows in dammed and
fenced plots was 184 cm
(highest posterior density interval, HPDI =
173, 192)
```

```
Median height of willows in dammed and
fenced plots was 184 cm
(equal-tailed Bayesian Credible Interval,
BCI = 174, 194)
```

What else can we do with a model?... Predictions

We want to know the distribution of the mean of the response when the predictor variable equals x_4

$$\mu_4 = \beta_0 + \beta_1 x_4.$$

We also want to know the distribution of a new observation at x_{a}

$$y_4^{new} \sim \operatorname{normal}(\mu_4, \sigma^2)$$

What can we do with a model?... Predictions

Х

Predicting a mean response:

The posterior predictive distribution of the mean

$$[\mu_4|\mathbf{y}] = \int_{\beta_o} \int_{\beta_1} \int_{\sigma^2} \left[\mathrm{E}(\ \mu_4 \)|\beta_0, \beta_1, \sigma^2 \right] \left[\beta_0, \beta_1, \sigma^2 |\mathbf{y}] \, d\beta_0 d\beta_1 d\sigma^2,$$

which we approximate by calculating

$$\mu_4^{(k)} = \beta_0^{(k)} + \beta_1^{(k)} x_4$$

at each iteration of the MCMC algorithm. Statistics can be calculated from each iteration of

Predicting a new observation: Composition Sampling

The posterior predictive distribution of \mathcal{Y}_4

$$[y_4^{new}|\mathbf{y}] = \int_{\beta_o} \int_{\beta_1} \int_{\sigma^2} \left[y_4^{new} | \beta_0, \beta_1, \sigma^2 \right] \left[\beta_0, \beta_1, \sigma^2 | \mathbf{y} \right] d\beta_0 d\beta_1 d\sigma^2,$$

We approximate this integral by drawing a new observation, y_4^{new} , at each MCMC iteration

$$y_4^{new(k)} \sim \operatorname{normal}(\beta_0^{(k)} + \beta_1^{(k)} x_4, \sigma^{2(k)})$$

Note: this is used for posterior predictive checks (coming soon).

Predicting a new observation with MCMC

> y.new[,4] 2.5% 50% 97.5% 7.146763 13.618321 19.975031 > mu[,4] 2.5% 50% 97.5% 11.30646 13.60504 15.92383

What else could this be used for?

model {

```
# priors
beta0 ~ dnorm(0,.001)
beta1 ~ dnorm(0,.001)
tau ~ dgamma(.001, .001)
sigma.sq <- 1/tau</pre>
```

```
# likelihood
for(i in 1:n) {
    mu[i] <- beta0 + beta1*x[i]
    y[i] ~ dnorm(mu[i], tau)
}</pre>
```

```
#derived quantities
#mu4.new <- beta0 + beta1*x[4]
y.new ~ dnorm(mu[4],tau)</pre>
```

Output from JAGS

k	5001	5002	5003	5004	5005		9996	9997	9998	9999	10000
β_0	9.84	10.9	10.6	10.7	11.9		12.5	9.84	11.1	10.9	11.7
β_1	1.38	1.22	1.25	1.12	1.14		1.04	1.23	1.27	1.06	1.14
σ^2	10.8	6.32	4.96	4.57	5.76	•••	12.4	9.77	8.19	6.88	13.1
μ_4	13.3	14	13.8	13.6	14.7		15.1	12.9	14.3	13.6	14.6
y ₄ ^{new}	9.29	14.3	9.44	15.3	18.5		11.4	16.8	12.8	14.5	15.8

Output from JAGS

k	5001	5002	5003	5004	5005	 9996	9997	9998	9999	10000
β_0	9.84	10.9	10.6	10.7	11.9	 12.5	9.84	11.1	10.9	11.7
β_1	1.38	1.22	1.25	1.12	1.14	 1.04	1.23	1.27	1.06	1.14
σ^2	10.8	6.32	4.96	4.57	5.76	 12.4	9.77	8.19	6.88	13.1
μ_4	13.3	14	13.8	13.6	14.7	 15.1	12.9	14.3	13.6	14.6
y ₄ ^{new}	9.29	14.3	9.44	15.3	18.5	 11.4	16.8	12.8	14.5	15.8

A simple example: Linear Regression Marginal Distributions of Parameters 0.30 3 0 0.25 8 ŝ 20 cui 0 Density Density N ଷ 0.15 \geq ŝ 0.10 0 5 0.05 0.5 0.00 0 0.0 20 0.8 1.0 1.8 n 5 10 15 12 16 1.2 1.4 1.6 D 7 0.12 0.12 0.3 0.08 0.08 Density Density Density 0.2 0.04 0.04 0.1 0.00 0.00 0.0 0 35 16 18 25 25 30 8 10 12 20

-μ

ď

У4

Derived Quantities

- Any quantity derived from a random variable becomes a random variable
- All random variables can have their own posterior distribution
- Obtain by calculating the value at each iteration based on current values of other parameters at that iteration
- · Can be done within model code, or after the MCMC has run
- Inference on any function of parameters:
 - 1. Difference between means
 - 2. Ratios of means
 - 3. Eigen analysis (population growth rate)
 - 4. Forecasts in time series
 - 5. Indices (Shannon diversity index)

Alternative library for fitting JAGS models: jagsUI

https://cran.r-project.org/web/packages/jagsUI/index.html

Another library for fitting Bayesian models for more advanced users:

nimble

https://r-nimble.org/

