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1 Aim

The purpose of this Primer is to teach the programming skills needed to approximate the

marginal posterior distributions of parameters, latent variables, and derived quantities of

interest using software implementing Markov chain Monte Carlo methods. Along the way,

we will reinforce some of the ideas and principles that we have learned in lecture. The Primer

is organized primarily as a tutorial and contains only a modicum of reference material.1 You

will need to study the JAGS manual at some point to become a fully competent programmer.

2 Introducing MCMC Samplers

WinBugs, OpenBUGS, and JAGS are three systems of software that implement Markov

chain Monte Carlo sampling using the BUGS language. BUGS stands for Bayesian Analysis

Using Gibbs Sampling, so you can get an idea what this language does from its name.

Imagine that you took the MCMC code you wrote for a Gibbs sampler and tried to turn it

into an R function for building chains of parameter estimates. Actually, you know enough

now to construct a very general tool that would do this. However, you are probably delighted

to know that you can accomplish the same thing with less time and effort using the BUGS

language.

OpenBUGS and WinBUGS run on Windows operating systems, while JAGS was specifi-

cally constructed to run multiple platforms, including macOS and Linux. Although all three

programs use essentially the same syntax, OpenBUGS and WinBUGS run in an elaborate

graphical user interface, while JAGS only runs from the command line of a Unix shell or

from R. However, all three can be easily called from R, and this is the approach we will

teach. Our experience is that the GUI involves far too much tedious pointing and clicking

1Other good references on the BUGS language include McCarthy (2007) and the JAGS manual. The JAGS
manual can be a bit confusing because it is written as if you were going to use the software stand alone,
that is, from a UNIX command line, which is one of the reasons we wrote this tutorial. However, it contains
very useful information on functions and distributions that is not covered in detail here. You need a copy
of the JAGS manual to supplement the material here.
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and doesn’t provide the flexibility that is needed for serious work.

There are two other options for software to approximate marginal posterior distributions,

which are faster than any of the BUGS implementations. The first is Stan, which is defi-

nitely worth looking at after you have become comfortable with JAGS. We don’t teach it

because it uses an algorithm (Hamiltonian MCMC), that is more difficult to understand

than conventional MCMC and because most published books on Bayesian analysis use some

form of the BUGS language.2 The general conclusion on the street is that JAGS is easier to

implement for simple problems; Stan is faster for more complex ones. Once you have learned

JAGS it is easy to migrate to Stan if it proves attractive to you.

The other option is INLA, which is dramatically faster than any MCMC method because

it doesn’t use sampling, but rather approximates the marginal distribution of the data. It

is not for the new initiate to Bayesian analysis. It applies to a somewhat restricted set of

problems.

3 Introducing JAGS

We will use JAGS, which stands somewhat whimsically for “Just Another Gibbs Sampler”.

There are three reasons for using JAGS as the language for this course. First and most

important, is because our experience is that JAGS is less fussy than WinBUGS (or Open-

BUGS), which can be notoriously difficult to debug. JAGS runs on all platforms, which

makes collaboration easier. JAGS has some terrific features and functions that are absent

from other implementations of the BUGS language. That said, if you learn JAGS you will

have no problem interpreting code written for WinBugs or OpenBUGS (for example, the

programs written in McCarthy 2007). The languages are almost identical except that JAGS

is better.3

2The most recent ones give examples in both languages.
3There is a nice section in the JAGS manual on differences between WinBUGS and JAGS. There is also
software called GeoBUGS) that is specifically developed for spatial models, but we know virtually nothing
about it. However, if you are interested in landscape or spatial ecology, we urge you to look into it.
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This tutorial will use a simple example of linear regression as a starting point for teaching

the BUGS language implemented in JAGS and associated R commands. Although the

problem starts simply, it builds to include some fairly sophisticated analysis in the problem

set you will do after completing the tutorial.

The model that we will use is the linear relationship between the per-capita rate of

population growth and the size a population, which, as you know, is the starting point for

deriving the logistic equation4. For the ecosystem scientists among you, this problem is

easily recast as the mass specific rate of accumulation of nitrogen in the soil; see for example

Knops and Tilman (2000). Both the population example and the ecosystem example can

happily use the symbol N to represent the state variable of interest. Social scientists will

be delighted to know that the logistic equation was originally applied to portray human

population growth (see here).

Consider a model predicting the per-capita rate of population growth (or the mass specific

rate of nitrogen accumulation),
1
N

dN

dt
= r − r

K
N, (1)

which, of course, is a linear model with intercept r and slope r
K

. Note that these quantities

enjoy a sturdy biological interpretation in population ecology; r is the intrinsic rate of in-

crease5, r
K

is the strength of the feedback from population size to population growth rate,

and K is the carrying capacity, that is, the population size (o.k., o.k., the gm N per gm soil

for the ecosystem scientists) at which dN
dt

= 0. Presume we have some data consisting of ob-

servations of per capita rate of growth paired with observations of N . The vector y contains

values for the rate and the vector x contains aligned data on N , i.e., yi = 1
Ni

dNi

dt
, xi = Ni.

To keep things simple, we start out by assuming that the xi are measured without error. A

simple Bayesian model specifies the joint distribution of the parameters and data as:

4Any of you claiming to be population ecologists must be able to derive the familiar, differential equation
for population growth rate dN

dt = rN(1 − N
K from equation 1.

5Defined as the per capita rate of increase when population size is near 0, such that there is no competition
for resources. The quantity r is a characteristic of the physiology and life history of the organism.
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µi = r − rxi

K
, (2)

[ r, K, τ | y] ∝
n∏

i=1
[ yi | µi, τ ] [r] [K] [τ ] , (3)

[r, K, τ | y] ∝
n∏

i=1
normal (yi | µi, τ) × gamma (K | .001, .001) (4)

gamma (τ | .001, .001) gamma (r | .001, .001) ,

Note that equation 4 has meaning identical to:

g(r, K, xi) = r − rxi

K
, (5)

[r, K, τ | y] ∝
n∏

i=1
normal (yi | g(r, K, xi), τ) gamma (K | .001, .001)

× gamma (τ | .001, .001) gamma (r | .001, .001)

which is the same as

[r, K, τ | y] ∝
n∏

i=1
normal (yi | r, K, τ) × gamma (K | .001, .001)

× gamma (τ | .001, .001) gamma (r | .001, .001)

We will use the notation in equation 4 because it has a nice correspondence with the

JAGS code, but you must remember that µi is simply a stand-in for g(r, K, xi).

where the priors are vague distributions for quantities that must, by definition, be positive.

Note that we have used the precision (τ) as an argument to the normal distribution rather

than the variance
(
τ = 1

σ2

)
to keep things consistent with the code below, a requirement

of the BUGS language.6 Now, we have full, abiding confidence that with a couple of hours

worth of work, perhaps less, you could knock out a Gibbs sampler to estimate r, K, and τ .

6And also a source of suffering when you forget to use precision rather than variance.
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However, we are all for doing things nimbly in 15 minutes that might otherwise take sweaty

hours of hard labor, so, consider the code in algorithm 1, below. Note also that we have

used “generic” vague priors, (i.e., flat gamma distributions), which may not be such a good

idea. However, it suffices as a place to start without requiring a bunch of explanation.

Exercise 1: Factoring There is no x in the posterior distribution in equation 4. What

are assuming if x is absent? Draw the Bayesian network, or DAG, for this model. Use

the chain rule to fully factor the joint distribution into sensible parts, then simplify by

assuming that r, K and τ are independent.

This code illustrates the purpose of JAGS (and other BUGS software): to translate

the numerator of Bayes theorem (a.k.a., the joint distribution, e.g., equation 4 ) into a

specification of an MCMC sampler. It is important for you to see the correspondence between

the model (equation 4) and the code. JAGS parses this code, sets up proposal distributions

and samplers in the MCMC algorithm, chooses values of tuning parameters if needed, and

returns the MCMC chain for each parameter. These chains form the basis for approximating

posterior distributions and associated statistics (e.g., means, medians, standard deviations,

and quantiles). As we will soon learn, it easy to derive chains for other quantities of interest

and their posterior distributions, for example, K/2 (by the way, what is K/2?), N as a

function of time or dN/dt as a function of N . It is easy to construct comparisons between the

growth parameters of two populations or among ten of them. It is straightforward to modify

your model and code to incorporate errors in the observations of population growth rate or

population size. If this seems as if it might be useful to you, continue reading, remembering

that what you learn will apply to any quantity of interest: grams of N mineralized, height

of trees, composition of landscapes, number of votes cast for a candidate.

JAGS is a compact language that includes a lean but useful set of scalar and vector

functions for creating deterministic models as well as a full range of distributions for con-

9



ESS 575 Models for Ecological Data JAGS Primer

## Logistic example for Primer
model{

# priors
K ~ dgamma(.001, .001)
r ~ dgamma(.001, .001)
tau ~ dgamma(.001, .001) # precision
sigma <- 1/sqrt(tau) # calculate sd from precision
# likelihood
for (i in 1:n){

mu[i] <- r - r/K * x[i]
y[i] ~ dnorm(mu[i], tau)

}
}

Algorithm 1: Linear regression example

structing stochastic models. The syntax closely resembles R7, but there are differences and

of course; JAGS is far more limited in what it does. Details of distributions used to fit

models are found in section 9.2 of the JAGS manual (Plummer, 2015) and are summarized

in the distribution cheat sheet. Rather than focus on these details, this tutorial presents

a general introduction to JAGS models, how to call them from R, how to summarize their

output, and how to check convergence. However, it necessary to read the the JAGS manual

at some point as well, particularly the sections on functions, distributions, and differences

between JAGS and WinBUGS.

4 Installing JAGS

Mac and Windows users, update your version of R to the most recent one. Go to the package

installer under Packages and Data on the toolbar and check the box in the lower right corner

for install dependencies. Install the rjags package (Plummer et al., 2016b) from a CRAN

mirror of your choice.

The site for downloading the JAGS files occasionally gives security error messages that

7With a few irritating exceptions.
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sound frightening. Try again a few times if you get one of these. My experience is that thye

go away after a couple of tries.

4.1 Mac OS

Go to SourceForge and download the latest version to get the disk mounting image. Install

as you would any other Mac software.

4.2 Windows

Go to SourceForge and download the latest version. Occasionally, Windows users have

problems loading rjags from R after everything has been installed properly. This problem

usually occurs because they have more than one version of R resident on their computers

(wisely, Mac OS will not allow that). So, if you can’t seem to get rjags to run after a proper

install, then uninstall all versions of R, reinstall the latest version, install the latest version

of rjags and the version of JAGS that matches it.

4.3 Linux

There is a link to the path for binaries found here on SourceForge. If you want to compile

from source code, there are detailed instructions on this blog post from Yu-Sung Su. Go to

SourceForge and download JAGS-4.3.0.tar.gz. Our guess is that you will need to download

the rjags package in R before installing JAGS. Here is a note on using the Ubuntu Software

Center, compliments of Jean Fleming:

“Elsie and I both use Ubuntu, which is a specific linux distribution, it is one

of the more commonly used distributions (it is user friendly!) so it is likely that

many linux users in the future will be able to use this advice. If anyone does

not have Ubuntu they may need to use the steps you described in the primer. I

installed the rjags package following the directions in the primer. Ubuntu comes
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with a Software Center where you can search for and download most open source

software, so to download and install JAGS I just opened up Software Center,

searched for JAGS, and installed it.”

5 Running JAGS

5.1 The JAGS model

Study the relationship between the numerator of Bayes theorem (equation 4) and the code

(algorithm 1). Although this model is a simple one, it has the same general structure as all

Bayesian models in JAGS:

1. code for priors,

2. code for the deterministic model,

3. code for the likelihood(s).

The similarity between the code and equation 4 should be pretty obvious, but there

are a few things to point out. Priors and likelihoods are specified using the ∼ notation

that we have seen in class. For example, remember that yi ∼ normal (µi, τ) is the same

as normal (yi | µi, τ). So, it is easy to see the correspondence between the mathematical

formulation of the model (i.e., the numerator of Bayes theorem, equation 4) and the code.

In this example, we chose vague gamma priors for r, K and τ because they must be non-

negative. We chose a normal likelihood because the values of y and µ are continuous and

can take on positive or negative values.

5.2 Technical notes

5.2.1 The model statement

Your entire model must be enclosed in brackets, like this:

12
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Exercise 2: Can you improve these priors? A recurring theme in this course will

be to use priors that are informative whenever possible. The gamma priors in equation

4 include the entire number line > 0. Don’t we know more about population biology

than that? Let’s, say for now that we are modeling the population dynamics of a large

mammal. How might you go about making the priors on population parameters more

informative?

model{

...

} # end of model

5.2.2 for loops

Notice that the for loop replaces the ∏n
i=1in the likelihood. 8 Recall that when we specify an

individual likelihood, we ask, what is the probability (or probability density) that we would

obtain this data point conditional on the value of the parameter(s) of interest? The total

likelihood is the product of the individual likelihoods. Recall in the Excel example for the

light limitation of trees that you had an entire column of likelihoods adjacent to a column

of deterministic predictions of our model. If you were to duplicate these “columns” in JAGS

you would write:

mu[1] <- r - r/K * x[1]

y[1] ~ dnorm(mu[1], tau)

mu[2] <- r - r/K * x[2]

y[2] ~ dnorm(mu[2], tau)

mu[3] <- r - r/K * x[3]

8It is vital to understand that JAGS is not a procedural language like R. It is not a set of instructions to be
executed sequentially. Instead it is a way to translate a mathematical statement into syntax that determine
the MCMC sampler that JAGS composes "behind the scenes."
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y[3] ~ dnorm(mu[3], tau)

...

mu[n] <- r - r/K * x[n]

y[n] ~ dnorm(mu[n], tau)

Well, presuming that you have something better to do with your time that to write out

statements like this for every observation in your data set, you may substitute:

for (i in 1:n){

mu[i] <- r - r/K * x[i]

y[i] ~ dnorm(mu[i], tau)

}

for the line by line specification of the likelihood. Thus, the for loop specifies the elements in

the product of the likelihoods. Note however, that the for structure in the JAGS language

is subtly different from what you have learned in R. For example the following would be

legal in R but not in the BUGS language:

# WRONG!!

for (i in 1:n){

mu <- r - r/K * x[i]

y[i] ~ dnorm(mu, tau)

}

If you write something like this in JAGS you will get a message that complains indignantly

about multiple definitions of node mu. If you think about what the for loop is doing, you

can see the reason for this complaint; the incorrect syntax translates to:

# WRONG!!

mu <- r - r/K * x[1]

14
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y[1] ~ dnorm(mu, tau)

mu <- r - r/K * x[2]

y[2] ~ dnorm(mu, tau)

mu <- r - r/K * x[3]

y[3] ~ dnorm(mu, tau)

...

mu <- r - r/K * x[n]

y[n] ~ dnorm(mu, tau)

which is nonsense if you are specifying a likelihood because mu is used more than once in a

likelihood for different values of y. This points out a fundamental difference between R and

the JAGS language. In R, a for loop specifies how to repeat many operations in sequence.

In JAGS a for construct is a way to specify a product likelihood or the distributions of priors

for a vector. One more thing about the for construct. If you have two product symbols

in the conditional distribution with different indices, that is ∏n
i=1

∏m
j=1, and two subscripts

in the quantity of interest i.e. quantity[i, j] then this dual product is specified in JAGS

using nested9 for loops, i.e.,

for (i in 1:n){

for (j in 1:m){

quantity[i, j]

} #end of j loop

} #end of i loop

The key is to look at the index of the quantity of interest and be sure that the for expressions

span all values of the subscript. You can use the length() function as an alternative to

giving an explicit argument for the number of iterations (e.g., n and m above),. For example

we could use:

9There is also a way to do this with a single loop, called the index trick. We will learn this important
approach soon. Stand ready.
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for (i in 1:length(x[])){

mu[i] <- r - r/K * x[i]

y[i] ~ dnorm(mu[i], tau)

}

Exercise 3: Using for loops. Write a code fragment to set vague normal priors for

5 regression coefficients – dnorm(0, 10E-6) – stored in the vector b.

5.2.3 Specifying priors

We specify priors in JAGS as:

randomVariable ~ distribution(parameter1, parameter2)

See the JAGS manual for available distributions. Note that in algorithm 1, the second argu-

ment to the normal density function is tau, which is the precision, defined as the reciprocal

of the variance. This means that we must calculate sigma from tau if we want a posterior

distribution on sigma. Be very careful about this – it is easy to forget that you must use the

precision rather than the standard deviation as an argument to dnorm or dlnorm. Failing to

do this is a source of immense suffering. (I know from experience.) For the lognormal, it is

the precision on the log scale. We usually express priors on σ rather than τ using code like

this:

# presuming 0-100 is far greater than the tails of the posterior of sigma

sigma ~ dunif(0, 100)

tau <- 1/sigma^2

This is what we normally do for two reasons. We can think about standard deviations but

precisions are bewildering to us. This allows us to put reasonable constraints on σ, which

we can then convert into τ . In addition, it can be very difficult to get τ to converge using

the flat prior gamma( τ | .001, .001), especially if models are hierarchical. But we are getting

ahead of ourselves.

16
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5.2.4 The assignment operator, <- or =

It used to be that you were required to use <- as the assignment operator in JAGS. You can

now use <- or = to accomplish the same thing. So, a <- 4 and a = 4 can be used to assign

the value 4 to a. This corresponds with syntax in R.

5.2.5 Vector operations

We don’t use any vector operations in algorithm 1, but JAGS supports a rich collection of

operations on vectors. You have already seen the length() function – other examples include

means, variances, standard deviations, quantiles, etc. See the JAGS manual. However, you

cannot form vectors using syntax like R’s concatenate function, c(). If you need a specific-

valued vector in JAGS, assign elements directly, something like:

v[1] <- 7.8

v[2] <- 3.4

v[3] <- 2.3

would define the vector v = (7.8, 3.4, 2.3)′. Or, you can read them in as data from the R side

of things, as we will soon learn.

5.2.6 Keeping variables out of trouble

Remember that all of the variables you are estimating will be sampled from a broad range of

values, at least initially, and so it is often necessary to prevent them from taking on undefined

values, for example logs of negatives, divide by 0, etc. You can usually use JAGS’ max()

and min() functions to do this. For example, to prevent logs from going negative, we often

use something like mu[i] <- log(max(.0001, expression)).

17
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5.3 Running JAGS from R

5.3.1 Stepping through a JAGS run

First, we transfer the code in the Logistic example (algorithm 2) into an R script. Note

that we have changed the priors to reflect the answer to exercise 2 and the discussion above

regarding precision versus variance. You may save this code in any directory that you like

and may name it anything you like. Here we save the file as LogisticJAGS.R. In algorithm

4 we show you how to create LogisticJAGS.R directly using the sink function in the same

R script you use to run the JAGS model itself. Either method will work so try both. 10

## Logistic example for Primer
model{

# priors
K ~ dunif(0, 4000)
r ~ dunif (0, 2)
sigma ~ dunif(0, 2)
tau <- 1/sigma^2
# likelihood
for(i in 1:n){

mu[i] <- r - r/K * x[i]
y[i] ~ dnorm(mu[i], tau)

}
}

Algorithm 2: Refined linear regression example

We implement our model in R using algorithm 3. We will go through the R code step by

step. We start by loading the package BayesNSF which has the data frame Logistic, which

we then order by PopulationSize. (Failing to do this sorting can result in goofy looking

line plots later, when the point plots look fine. ) Next, we specify the initial conditions for

the MCMC chain in the statement inits. This is exactly the same thing as you did when

you wrote MCMC code and assigned a guess to the first element in the chain.

10We prefer using a separate file for two reasons. Changes can be made and saved much more quickly if the
JAGS code is in its own file. Error messages produce line numbers that mean something when the code is
in a file. IWuse the sink approach only with very small models.
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rm(list = ls())
library(NSFBayes)
library(rjags)
Logistic = Logistic[order(Logistic$PopulationSize),]

inits = list(
list(K = 1500, r = .2, sigma = 1),
list(K = 1000, r = .15, sigma = .1),
list(K = 900, r = .3, sigma = .01))

data = list(
n = nrow(Logistic),
x = as.double(Logistic$PopulationSize),
y = as.double(Logistic$GrowthRate))

n.adapt = 1000
n.update = 10000
n.iter = 10000

# Call to JAGS
set.seed(1)
jm = jags.model("LogisticJAGS.R", data = data, inits = inits,
n.chains = length(inits), n.adapt = n.adapt)
update(jm, n.iter = n.update)
zm = coda.samples(jm, variable.names = c("K", "r", "sigma", "tau"),
n.iter = n.iter, n.thin = 1)

Algorithm 3: R code for running logistics JAGS script

Initial conditions must be specified as as “list of lists”, as you can see in the code. If you

create a single list, rather than a list of lists, i.e.:

inits = list(K = 1500, r = .5, tau = 2500) # WRONG

you will get an error message when you execute the jags.model statement and your code will

not run. Second, this statement allows you to set up multiple chains,11 which are needed for

some tests of convergence and to calculate DIC (more about these tasks later). For example,

11We often start our work with a single chain. Once everything seems to be running, we add additional ones.
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if you want three chains, you would use:

inits = list(

list(K = 1500, r = .2, sigma = 1),

list(K = 1000, r = .15, sigma = .1),

list(K = 900, r = .3, sigma = .01))

Now it is really easy to see why we need the “list of lists” format – there is one list for each

chain; but remember, you require the same structure for a single chain, that is, a list of lists.

Which variables in your JAGS code require initialization? All unknown quantities that

appear on the left hand side of the conditioning in the posterior distribution require initial

values. Think about it this way. When you were writing your own MCMC algorithm,

every chain required a value as the first element in the vector holding the chain. That is

what you are doing when you specify initial conditions here. You can get away without

explicitly specifying initial values – JAGS will choose them for you if you don’t specify them

– however, we strongly urge you to provide explicit initial values, particularly when your

priors are vague. This habit also forces you to think about what you are estimating.

The next couple of statements,

data = list(

n = nrow(Logistic),

x = as.double(Logistic$PopulationSize),

y = as.double(Logistic$GrowthRate))

specify the data that will be used by your JAGS program. Notice that you can assign data

vectors on the R side to different names on the JAGS side. For example, the bit that reads

x = as.double(Logistic$PopulationSize) says that the x vector in your JAGS program

(algorithm 2) is composed of the column in your data frame called PopulationSize, and

the bit that reads y = as.double(Logistic$GrowthRate) creates a y vector required by
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the JAGS program from the column in your data frame called GrowthRate. You might want

to know why we assigned the data as a double rather than as an integer. The answer is that

the execution of JAGS is about 5 times faster on double precision than on integers.

It is important for you to understand that the left hand side of the = corresponds to

variable name for the data in the JAGS program and the right hand side of the = is what

they are called in R. Also, note that because Logistic is a data frame we used as.integer()

and as.double( )12 to be sure that JAGS received numbers instead of characters or factors,

as can happen with data frames. In this case, it was unnecessary, but be aware you may

need these. This can be particularly important if you have missing values in the data. The

n is required in the JAGS program to index the for structure (algorithm 3) and it must be

read as data in this statement.13 By the way, you don’t need to call this list “data” – it

could be anything “apples”, “bookshelves”, “xy”, etc.)

Now that you have a list of data and initial values for the MCMC chain you make calls

to JAGS using the following statements:

library(rjags)

n.adapt = 1000

n.update = 10000

n.iter = 10000

# Call to JAGS

set.seed(1)

jm = jags.model("LogisticJAGS.R",data = data, inits = inits,

n.chains = length(inits), n.adapt = n.adapt)

update(jm, n.iter = n.update)

zm = coda.samples(jm, variable.names = c("K", "r", "sigma", "tau"),

12This says the number is real and is stored with double precision, i.e., 64 bits in computer memory. This
varies with the type of number being stored, but a good rule of thumb is that 16 decimal places can be
kept in memory. This is usually sufficient for ecology!

13You could hard code the for index in the JAGS code, but this is bad practice. The best practice, which
we use now, is to use something like for (i in 1:length(y)).
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n.iter = n.iter, n.thin = 1)

There is a quite a bit to learn here, so if your attention is fading, go get an espresso. First,

we need to load the package rjags. We specify 3 scalars, n.adapt, n.update, and n.iter.

These tell JAGS the number of iterations in the chain for adaptation (n.adapt), burn-in

(n.update) and the number to keep in the final chain (n.iter). The first one, n.adapt, may

not be familiar – it is the number of iterations that JAGS will use to choose the sampler and

to assure optimum mixing of the MCMC chain.14 The second, n.update, is the number of

iterations that will be discarded to allow the chain to converge before iterations are stored

(aka, burn-in). The final one, n.iter, is the number of iterations that will be stored in the

chain as samples from the marginal posterior distributions – it forms the “rug”.

The jm = jags.model... statement sets up the MCMC chain. Its first argument is the

name of the file containing the JAGS code. Note that the file resided in the current working

directory in this example. Otherwise, you would need to specify the full path name. The

next two expressions specify where the data come from, where to get the initial values, and

how many chains to create (i.e., the length of the list inits). Finally, it specifies the burn-in

how many samples to throw away before beginning to save values in the chain. Thus, in this

case, we will throw away the first 10,000 values.

The second statement (zm = coda.samples...) creates the chains and stores them as

an MCMC list (more about that soon). The first argument (jm) is the name of the jags model

you created with the jags.model function. The second argument (variable.names) tells

JAGS which variables to “monitor”. These are the variables for which you want marginal

posterior distributions.

Finally, n.iter = n.iter says we want 10,000 iterations in each chain and thin specifies

how many of these to keep. For example, if thin = 10, we would store every 10th element.

Sometimes setting thin > 1 is a good idea to reduce the size of the data files that you will

analyze, but that is not the only reason you should thin the chain (Link and Eaton, 2012).

14Remember the tuning parameter in Metropolis Hastings?
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{ # Extra bracket needed only for R markdown files - see answers
sink("LogisticJAGS.R") # This is the file name for the jags code
cat("
model{

# priors
K ~ dunif(0, 4000)
r ~ dunif (0, 2)
sigma ~ dunif(0, 2)
tau <- 1 / sigma^2
# likelihood
for(i in 1:n){

mu[i] <- r - r / K * x[i]
y[i] ~ dnorm(mu[i], tau)

}
}
",fill = TRUE)
sink()
} # Extra bracket needed only for R markdown files - see answers

Algorithm 4: Example of code for inserting JAGS code into an R script. This should be placed
above the R code in algorithm 3. You must remember to execute the code in between the sink
commands every time you make changes in the model.

Exercise 4: Coding the model. Write R code (algorithm 3) to run the JAGS model

(algorithm 2) and estimate the parameters, r, K σ, and τ . We suggest you insert the

JAGS model into this R script using the sink command as shown in algorithm 4 because

this model is small. You will find this a convenient way to keep all your code in the same

R script. For larger models, you will be happier using a separate file for the JAGS code.

6 Output from JAGS

6.1 coda objects

The coda.samples function in rjags package produces output in the form of an mcmc.list

object, sometimes referred to as a coda object (in reference to the coda package (Plummer

et al., 2016a), recalling the final movements of symphonies).
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6.1.1 The structure of coda objects

The zm object produced by the statement:

zm = coda.samples(jm, variable.names = c("K", "r", "sigma", "tau"),

n.iter = n.iter, thin = 1)

is a coda object (more precisely, an mcmc.list object). But what is a coda object? For the

first chain, it looks something like this15:

[[1]]

Markov Chain Monte Carlo (MCMC) output:

Start = 15001

End = 15007

Thinning interval = 1

K r sigma tau

[1,] 1177.867 0.1871039 0.02207365 2052.3520

[2,] 1317.527 0.1984132 0.03435912 847.0633

[3,] 1205.740 0.2029698 0.03561197 788.5114

[4,] 1219.347 0.2025454 0.02059334 2358.0146

...

as many rows as you have thinned iterations

So, the output of coda is a list of matrices where each matrix contains the output of a single

chain for all parameters being estimated. Parameter values are stored in the columns of the

matrix; values for one iteration of the chain are stored in each row. If we had 2 chains, 5

iterations each, the coda object would look like:

[[1]]

Markov Chain Monte Carlo (MCMC) output:

15Don’t worry if your output doesn’t match this exactly. The example here was run with a different set of
priors and initial values.
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Start = 10001

End = 10005

Thinning interval = 1

K r sigma

[1,] 1070.013 0.2126878 0.02652204

[2,] 1085.438 0.2279789 0.02488036

[3,] 1170.086 0.2259743 0.02331958

[4,] 1094.564 0.2228788 0.02137309

[5,] 1053.495 0.2368199 0.03209893

[[2]]

Markov Chain Monte Carlo (MCMC) output:

Start = 10001

End = 10005

Thinning interval = 1

K r sigma

[1,] 1137.501 0.2657460 0.04093364

[2,] 1257.340 0.1332901 0.04397191

[3,] 1073.023 0.2043738 0.03355776

[4,] 1159.732 0.2339060 0.02857740

[5,] 1368.568 0.2021042 0.05954259

attr(,"class")

[1] "mcmc.list"

It is important that you be able to manipulate the MCMC output stored in coda objects.

Why would you want to do that? There are two reasons. By dissecting the coda object, you

can see the MCMC process that we worked so hard to understand earlier. A more useful

reason is described in Box 1.
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Exercise 5: Understanding coda objects.

1. Convert the coda object zm, into a data frame using df =

as.data.frame(rbind(zm[[1]], zm[[2]], zm[[3]])) Note the double brack-

ets, which effectively unlist each element of zm, allowing them to be combined.

Another way to do this is do.call(rbind,zm).

2. Look at the first six rows of the data frame.

3. Find the maximum value of sigma.

4. Find the mean of r for the first 1000 iterations.

5. Find the mean of r after the last 1000 iterations.

6. Make two publication quality plots of the marginal posterior density of K, one as

a smooth curve and the other as a histogram.

7. Compute the probability that K > 1600. Hint: use the the dramatically useful R

function ecdf().

8. Compute the probability that 1000 < K < 1300.

9. Compute the .025 and .975 quantiles of K. Hint–use the R quantile() function.

This is an equal-tailed Bayesian credible interval on K.

Box 1: Using R to calculate derived quantities from MCMC objects

One of the most powerful benefits of Bayesian analysis using MCMC is the ability to

make inference on derived quantities using what is called the equivariance principle

(Hobbs and Hooten (2015) page 194), which simply says that any function of a random

variable becomes a random variable with its own marginal posterior distribution. This

principle allows you to write simple functions in your JAGS code and make inference on
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quantities that are calculated from the random variables included in the model (e.g., r,

K, σ) as you will soon see in the exercises associated with this lab.

However, what can you do if the function you need to apply is too complex to write

out in JAGS? A good example in Tom’s work is finding the dominant eigenvalue and

eigenvector of projection matrices. What do you do if you need to use a function like

R’s eigen()? This is where knowing how to “get under the hood” with MCMC output

stored in coda objects is critical. You simply take output from each iteration, apply the

function, and store the result, enabling you to make inference on the stored results in

the same way you make inferences on the output from the MCMC itself by creating a

“derived” chain. This is covered nicely in Hobbs and Hooten (2015) section 8.3.

6.1.2 Summarizing coda objects with the MCMCvis package

Manipulating and summarizing coda objects manually can be tedious work prone to coding

errors. Fortunately there are existing tools to help out with these tasks. The MCMCvis

package (Youngflesh, 2018)16 provides a series of functions to summarize, manipulate, and

visualize model output. You should get the package MCMCvis and load the library.

MCMCvis will work with coda objects produced by any of the flavors of MCMC software,

JAGS, OpenBUGS, WinBUGS and Stan, or for matrices produce from your own MCMC

samplers. It allows you to run chains in parallel and make useful inference on the parallel

output, which must be a coda object.

We cover the essential elements here, but you should work through the full MCMCvis

tutorial to get maximum benefit of these powerful functions. We suggest that you have the

tutorial open in the help window of R studio as you work through the exercises below.17

MCMCvis includes five functions that we will use a lot:

• MCMCsummary - summarize MCMC output for particular parameters of interest

16Casey Youngflesh took our Bayesian short course at SESYNC in 2016. He has obviously made lots of
progress since then!

17Go to R help, packages, MCMCvis, User guides, package vignettes and other documentation, MCM-
Cvis::MCMCvis.
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• MCMCpstr - summarize MCMC output and extract posterior chains for particular pa-

rameters of interest while preserving parameter structure

• MCMCtrace - create trace and density plots of MCMC chains for particular parameters

of interest

• MCMCchains - easily extract posterior chains from MCMC output for particular param-

eters of interest

• MCMCplot - create caterpillar plots from MCMC output for particular parameters of

interest

6.1.3 Tabular summaries with MCMCsummary

You can obtain a summary of statistics from MCMC chains contained in a coda object by

loading the MCMCvis package (using library(MCMCvis)) and then running MCMCsummary(co)

(where co is a coda object produced from your model run). All of the variables in the

variable.names = c( ) argument to the coda.samples function will be summarized. For

the example here, MCMCsummary(zm) produces:

mean sd 2.5% 50% 97.5% Rhat

K 1238.19 62.97 1129.05 1233.29 1377.56 1

r 0.20 0.01 0.18 0.20 0.22 1

sigma 0.03 0.00 0.02 0.03 0.04 1

tau 1259.39 258.98 804.20 1242.71 1809.77 1

A few things deserve note. First, it is imperative that you understand that the sd in this

table is the standard deviation of the marginal distribution of the parameter, analogous to

the standard error of the mean. The 2.5%, 50%, and 95.5% quantiles are given for each

parameter, as is the Rhat value (used to assess convergence, which we will discuss later).

The table above has the properties of a matrix. You can output the cells of these tables

using syntax as follows. To get the mean and standard deviation of r,
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> MCMCsummary(zm)[2, 1:2]

mean sd

0.20 0.01

To get the upper and lower 95% quantiles on K from the tabular summary:

> MCMCsummary(zm)[1, c(1, 5)]

mean 97.5%

1238.19 1377.56

We will learn easier, less error-prone ways to do this below.

The parameter name of interest can be passed directly to the params argument of the

MCMCsummary function to more easily summarize output. For example, to see statistics for

the marginal posterior distribution of σ,

> MCMCsummary(zm, params = ’sigma’)

mean sd 2.5% 50% 97.5% Rhat

sigma 0.03 0 0.02 0.03 0.04 1

There are some particularly useful options for this function. You can control the number

of significant digits (digits = ) or the number of decimal places (round =). You can also

specify the convergence diagnostics Rhat and n.eff. See the MCMCvis tutorial and sections

7.2 and 7.5 in this document for more explanation.

Exercise 6: Using MCMCsummary

1. Summarize the coda output from the logistic model with 4 significant digits. In-

clude Rhat and effective sample size diagnostics (more about these soon).

2. Summarize the coda output for r alone.
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6.1.4 Extracting portions of coda object with MCMCchains

MCMCchains can be used to extract chains from coda object. These can then be summarized

using the usual R functions. For example

> r.ex = MCMCchains(zm, params="r")

> dim(r.ex)

[1] 30000 1

> head(r.ex)

r

[1,] 0.1840311

[2,] 0.1993270

[3,] 0.1914906

[4,] 0.1930457

[5,] 0.1862841

[6,] 0.1897411

> mean(r.ex)

[1] 0.2007835

> ecdf(r.ex)(.18)

[1] 0.01743333

> quantile(r.ex,c(.025,.975))

2.5% 97.5%

0.1816953 0.2201085

6.1.5 Extracting portions of coda objects while preserving their structure using

MCMCpstr

The coda object is strictly tabular – it is a list of matrices with the number of elements of the

list equal to the number of chains. So, for example three chains will produce a list of three
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Exercise 7: Using MCMCchains

1. Extract the chains for r and sigma as a data frame using MCMCchains and compute

their .025 and .975 quantiles from the extracted object. Display three significant

digits.

2. Make a publication quality histogram for the chain for sigma. Indicate the .025

and .975 Bayesian equal-tailed credible interval value with vertical red lines.

3. Overlay the .95 highest posterior density interval with vertical lines in blue. This

is a "learn on your own" problem intended to allow you to rehearse the most

important goal of this class: being sufficiently confident to figure things out. Load

the package HDInterval, enter ?HDInterval at the console and follow your nose.

Also see Hobbs and Hooten Figure 8.2.1.

matrices. The columns of each matrix include the variables specified in the variable.names

= ... argument of coda.samples. The rows hold the output of individual iterations. This

is fine when the parameters you are estimating are entirely scalar, but sometimes you want

posterior distributions for all of the elements of vectors or matrices and in this case, the coda

object can be quite cumbersome because the elements of vectors and matrices loose their

structure, being shoe-horned into rows an a matrix.

We have been working with scalars, r, K, and sigma up to now. We will often seek

inference on vectors, particularly when we want to make predictions. These predictions can

be made at the in-sample x′s of for out-of-sample x′s that we specify. For example, take

a look at your JAGS model. The quantity mu[i] is the prediction of our deterministic

model for each of the x[i]. The quantity mu is a vector, a derived quantity. We call it a

derived quantity because it is a function of random variables in the model. The equivariance

property of MCMC means that any quantity that is a function of random variables becomes
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a random variable with its own marginal posterior distribution.

Presume you would like to get posterior distributions on the predictions of your regression

model for each of the x values. Note in the JAGS code that we make this prediction as mu[i]

<- r - r / K * x[i]. Making predictions requires no more than adding mu to the list of

random variables being monitored by changing your coda.samples statement to read:

zm = coda.samples(jm, variable.names = c("K", "r", "sigma", "mu"),

n.iter = n.iter, thin = 1)

Instead of using MCMCsummary to summarize your data, use MCMCpstr, to preserve the struc-

ture of the mu parameter a vector of length equal to the number of data points. MCMCsummary

returns the mean of each parameter by default, but any function can be specified using the

func argument. The format is a list, with each parameter listed as a separate element in that

list. Any parameter of interest can be specified, as with the other functions in the MCMCvis

package. Use the following general syntax to summarize the coda object while preserving

the parameter structure:

MCMCpstr(co, params = ’PARAMS’, func = FUN)

where co is a coda object, PARAMS are the parameters of interest (all parameters by default),

and FUN is the function of interest (mean by default). Only one function can be applied at

a given time. The most useful of these are illustrated here, but there are an infinite number

of possibilities, including functions that you write.

> BCI <- MCMCpstr(zm, params = "mu", func = function(x)

quantile(x, probs = c(.025,.5,.975)))

> BCI

$mu

2.5% 50% 97.5%

mu[1] 0.172880664 0.19043630 0.20734240
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mu[2] 0.171524527 0.18881415 0.20546368

mu[3] 0.165875964 0.18213155 0.19775789

.

.

.

mu[48] 0.018303545 0.03273251 0.04706730

mu[49] 0.016248511 0.03093309 0.04551707

mu[50] 0.006896648 0.02279023 0.03858062

Be sure you understand that MCMCpstr() returns a list, not a vector or matrix. Each

element of the list is named for the parameters listed in the params = option. Obtaining the

matrices computed above requires BCI$mu. Here is an example for more than one variable:

library(HDInterval)

> HPDI <- MCMCpstr(zm, params = c("r", "K"), func = function(x)

hdi(x, .95))

> HPDI

$r

lower upper

r 0.1827305 0.2202985

$K

lower upper

K 1117.529 1357.458

6.1.6 Visualizing model output

Posterior densities (representing the model estimate for each parameter and their uncer-

tainty) can be easily visualized with caterpillar plots produced with the MCMCplot function.

Once again, the coda object and parameters are fed directly to the function:
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Exercise 8: Plotting model predictions using the MCMCpstr formatting.

1. Plot the observations of per-capita growth rate as a function of observed population

size. Be sure that the population size data are sorted from lowest to highest as

described above

2. Overlay the median of the model predictions as a solid black line.

3. Overlay the 95% credible intervals as dashed lines in red.

4. Overlay the 95% highest posterior density intervals as dashed lines in blue.

5. What do you note about these two intervals? Will this always be the case? Why

or why not?

6. What do the dashed lines represent? What inferential statement can we make

about mu relative these lines?

MCMCplot(co, params = c(’alpha, ’beta’’))

Exercise 9: Creating caterpillar plots with MCMCplot. Use the MCMCplot function

to create caterpillar plots to visualize the posterior densities for mu using the coda object

zm from earlier. Then use ?MCMCplot to explore different plotting options. There are

lots of these options, including ways to make the plots publication quality, show overlap

with zero, etc.

7 Checking convergence

Recall from lecture that MCMC output will provide a reliable approximation of the marginal

posterior distribution of unobserved quantities only after convergence, which means that

adding more iterations will not appreciably change the shape of marginal posterior distribu-

tions. Both MCMCvis and the coda packages contains tools for evaluating and manipulating
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MCMC chains produced in coda objects. We urge you to look at the package documentation

in R Help, because we will use only a few of the tools it offers. There are several ways to

check convergence, but we will use four here: 1) visual inspection of density and trace plots

2) Gelman and Rubin diagnostics, 3) Heidelberger and Welch diagnostics, and 4) Raftery

diagnostics. Also see Hobbs and Hooten (2015) section 7.

7.1 Trace and density plots

Trace plots (showing parameter estimates at each iteration in the chain over time) as well

as posterior density plots can be plotted with MCMCtrace. The type argument can be used

to specify which types of plots should be generated (trace, density, or both). As with other

function in the MCMCvis package, parameters of interest can be specified. Trace plots indicate

convergence if they are horizontal bands with all chains mixed within the band.

MCMCtrace is an exceptionally useful function allowing you to overlay priors and marginal

posteriors (computing their %overlap) as well as overlaying marginal posteriors on values of

parameters used to generate simulated data. Look at the MCMCvis vignette to learn more

about these useful capabilities.

7.2 Gelman and Rubin diagnostics (Rhat)

The standard method for assuring convergence is the Gelman and Rubin diagnostic (Gelman

and Rubin, 1992), which “determines when the chains have forgotten their initial values, and

the output from all chains is indistinguishable” (R Development Core Team, 2016). This is

also commonly referred to as Rhat. It requires at least 2 chains to work. For a complete

treatment of how this works, see Hobbs and Hooten (2015) section 7.3.4.2. We can be sure of

convergence if all values for point estimates and 97.5% quantiles approach 1. More iterations

should be run if the 95% quantile > 1.05. MCMCsummary displays Rhat values by default for

each parameter. It can be calculated with the following:
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MCMCsummary(codaObject)

Reliable inference from the Gelman and Rubin diagnostic requires initial values that are

diffuse relative to marginal posterior distribution, that is, that are in the extreme tails of

the distribution. How do you set these values? Run a single chain until things look right.

Then choose initial values that are on well in the tails of the distribution on either side of

the mean.

The effective sample size n.eff is a particularly useful quantity, not reported by most

MCMC software. Think about it this way. Imagine you have 10,000 iterations. You might

think that the sample size for computing statistics is, well, 10,000 and, yes, in fact, when you

compute a mean it is based on n = 10,000. However, the information about that mean is

less than 10,000 when chains are autocorrelated, that is when a value at iteration k is more

similar to the value a k+1 than to the value at k+10. Therefore, the effective sample size can

be far less than 10,000. This is what n.eff is telling you. You may have a converged chain

but will want more iterations to simply increase the accuracy of numeric approximations of

statistics.

7.3 Heidelberger and Welch diagnostics

The Heidelberger and Welch diagnostic (Heidelberger and Welch, 1983) works for a single

chain, which can be useful during early stages of model development before you have initial-

ized multiple chains. The diagnostic tests for stationary in the distribution and also tests

if the mean of the distribution is accurately estimated. The function heidel.diag in the

coda package can be used to calculated this metric. For details do ?heidel.diag and read

the part on Details. We can be confident of convergence if out all chains and all parameters

pass the test for stationarity and half width mean. We can be sure that the chain converged

from the first iteration (i.e, burn in was sufficiently long) if the start iteration = 1. If it is

greater than 1, the burn in should be longer, or 1:start.iteration should be discarded

from the chain. The synatx is:
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heidel.diag(codaObject)

7.4 Raftery diagnostic

The Raftery diagnostic Raftery and Lewis (1995) is useful for planning how many iterations

to run for each chain. It is used early in the analysis with a relatively short chain, say 10,000

iterations. It returns an estimate of the number of iterations required for convergence for

each of the parameters being estimated. The raftery.diag function in the coda package

can be used in this case. The syntax is:

raftery.diag(codaObject)

Exercise 10: Assessing convergence. Rerun the logistic model with n.adapt =

100. Then do the following:

1. Keep the next 500 iterations. Assess convergence visually with MCMCtrace and

with the Gelman-Rubin, Heidelberger and Welch, and Raftery diagnostics.

2. Update another 500 iterations and then keep 500 more iterations. Repeat your

assessment of convergence.

3. Repeat steps 1 and 2 until you feel you have reached convergence.

4. Change the adapt phase to zero and repeat steps 1 – 4. What happens?

7.5 Effective sample size (n.eff)

MCMC chains will almost always have some degree of autocorrelation, which is to say samples

that are close to each other in the chain will be more similar than samples that are far apart.

One hundred samples that are highly correlated may only contain as much information about

the marginal posterior as 20 samples that are truly independent. This lead to the concept
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of effective sample size, abbreviated by MCMCsummary as n.eff. The effective sample size

is an estimate of the number of samples drawn that are independent. It is

ESS = n

1 + 2 ∑∞
1 ρ(k)

where ρ(k) is the correlation between samples at lag k.

8 Parallelizing your JAGS run (optional)

This section is optional and you can safely ignore it with no loss of learning later in the

course. However, at some point in the future you will likely want to parallelize a JAGS run.

If you have three chains, running them in parallel will require approximately one third of

the time required to run all three sequentially. Here is how to run chains in parallel.

First, you need to discover how many cores are available in processor. Type the R

statement parallel::detectCores() to find out. You need to leave at least one core

available while you are running your MCMC. For now, run four or fewer cores. If you want

to run more than four cores, you should look into the JAGS lecuyer module.

Now write code following the example below.

####Code for running logistic model in parallel#######################################

#Load libraries needed for parallel processing

library(dclone)

library(doParallel)

library(parallel)

#We want the length of the \texttt{inits} list to equal the number of parallel chains we want to run. In this case, three.

inits = list(

list(K=1500,r = .2,sigma = .01, .RNG.name = "base::Mersenne-Twister",.RNG.seed = 104),
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list(K=1000,r = .15,sigma = .5,.RNG.name = "base::Mersenne-Twister",.RNG.seed = 22),

list(K=900,r = .3,sigma = .01,.RNG.name ="base::Mersenne-Twister",.RNG.seed = 2))

start.time = Sys.time()

n.cores = length(inits)

cl <- makePSOCKcluster(n.cores)

tmp <- clusterEvalQ(cl, library(dclone))

#parLoadModule(cl, "glm") #if you want to use glm module

variable.names = c("K", "r", "sigma", "tau")

zp=jags.parfit(cl,model="LogisticJAGS.R",params = variable.names, inits = inits, data=data, n.chains = n.cores , n.update = 10000, n.iter= 10000, n.adpat = 1000, n.thin=1)

stopCluster(cl)

end.time = Sys.time()

elapsed.time = end.time - start.time

elapsed.time

MCMCsummary(zp)

We first load three libraries needed to implement parallel processing in JAGS. Next we

set up our initial values, which determine the number of chains that will be run in parallel via

the n.cores = length(inits) statement. The next few statements set up parallelization.

The only thing new here is the bit .RNG.name = "base::Mersenne-Twister",.RNG.seed

= 104, which chooses the random number generator and assures that each chain starts in a

different place.

The statement

zp=jags.parfit(cl,model="LogisticJAGS.R",params = variable.names, inits = inits, data=data, n.chains = n.cores , n.update = 10000, n.iter= 10000, n.adpat = 1000, n.thin=1)

basically combines the adapt, update and coda.samples statements you have used

39



ESS 575 Models for Ecological Data JAGS Primer

before into a single line of code that runs things in parallel. You then analyze the zp coda

object in the same way you have done before.

9 Monitoring deviance and calculating DIC

It is often a good idea to report the deviance of a model, defined as −2 log [P (y | θ)]. To

obtain the deviance of a JAGS model you need to do two things. First, you need to add the

statement:

load.module("dic")

above your coda.samples statement. In the list of variables to be monitored, you add

“deviance” i.e.,

zm = coda.samples(jm,variable.names=c("K", "r", "sigma", "deviance"),

n.iter = 25000, thin = 1)

Later in the course we will learn about the Bayesian model selection statistic, the deviance

information criterion (DIC). DIC samples values are generated using syntax like this:

dic.object.name = dic.samples(jags.model, n.iter, type = "pD")

So, to use your regression example, you would write something like:

dic.j = dic.samples(jm, n.iter = 2500, type = "pD")

If you enter dic.j at the console (or run it as a line of code in your script) R will respond

with something like:

Mean deviance: -46.54

penalty 1.852

Penalized deviance: -44.69
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10 Differences between JAGS and Win(Open)BUGS

The JAGS implementation of the BUGS language closely resembles the implementation

in WinBUGS and OpenBUGS, but there are some important structural differences that are

described in Chapter 8 of the JAGS manual (Plummer, 2015). There are also some functions

(for example, matrix multiplication and the ^ symbol for exponentiation) that are available

in JAGS has but that are not found in the other programs.

11 Troubleshooting

Some common error messages and their interpretation are found in the table below.

Table 1: Troubleshooting JAGS

Message Interpretation

Unable to resolve the following

parameters: x[1] Either supply values

for these nodes with the data or define

them on the left hand side of a relation.

You are using x in a function but have NA for x[1].

You must define x[1] to perform this operation. See

here.

Possible directed cycle involving some or

all of the following nodes: y[1] y[2]

You have defined y[1] to depend on y[2] and vice-

versa. This is called a directed cycle and is not al-

lowed in JAGS. See here.

Error: Error in node ... Failure to

calculate log density

Occurs when there are illegal values on the lhs. For

example, variables that take on undefined values,

like log of a negative. You will also get this with a

Poisson distribution if you give it continuous num-

bers as data.

Syntax error, unexpected ’}’, expecting

$end

Occurs when there are mismatched parentheses.

Continued on next page
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Table 1 – Continued from previous page

Message Interpretation

Error in jags.model("beta", data = data,

n.chain = 1, n.adapt = 1000) : Error in

node y[7] Invalid parent values

Occurs when there is an illegal mathematical opera-

tion or argument on the rhs. For example, negative

values for argument to beta or Poisson distribution,

division by zero, log of a negative, etc.

Error in setParameters(init.values[[i]],

i) : Error in node sigma.s[1] Attempt to

set value of non-variable node

You have a variable in your init list that is not a

stochastic node in the model, i.e., it is constant.

Error in jags.samples(model,

variable.names, n.iter, thin, type =

"trace", : Failed to set trace monitor

for node ...

The variable list in your coda.samples or

jags.samples statement includes a variable that

is not in your model. It also may mean that you

asked JAGS to monitor a vector that does not have

an initial value. You can fix this by giving the

vector any initial value.

Error: Error in node x[3,5,193] All

possible values have probability zero

You have uninitialized values for x.

Error in jags.model("LogisticJAGS.R",

data = data, inits, : RUNTIME ERROR:

Unable to evaluate upper index of counter

i

You omitted the value for the upper range of the

loop from the data statement.

Error in jags.model("LogisticJAGS.R",

data = data, inits, n.chains =

length(inits), : RUNTIME ERROR: Unknown

parameter sgma

You misspelled a parameter name. In this case, sgma

should have been sigma. Rejoice, this is an easy one!

multiple definitions of node [x] You probably forgot the index on a variable within

a for loop.

Wrong number of arguments to distribution You have a <- instead of a ~ on the lhs of the dis-

tribution

Continued on next page
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Table 1 – Continued from previous page

Message Interpretation

Error in jags.model("model", data = data,

inits = inits, n.adapt = 3) : Length

mismatch in inits

You have a list of inits that specifies more than one

chain, but you failed include the number of chains

in the jags.model function. Adding the n.chain =

length(inits) to the jags.model function will fix

it.

Error in jags.model("model", data = data,

inits = inits, n.adapt = 3000) : Error

in node y[15] Observed node inconsistent

with unobserved parents at initialization

This will happen whenever you have latent 0–1

quantities, as is common in mark recapture or occu-

pancy models, and you fail to initialize them. Ini-

tialize these latent states at 1.

Slicer stuck at value with infinite

density

From Martyn Plummer on the JAGS listserv, “Dis-

tributions with a shape parameter (Beta, Dirichlet,

Gamma) can cause trouble when the shape param-

eter is close to zero and the probability mass gets

concentrated into a single point.” Alter your priors,

use offsets, or truncate to prevent this from happen-

ing.

When using gelman.diag( ). Error in

chol.default(W) : the leading minor of

order 7 is not positive definite

You have derived quantities in you coda output that

are functions of parameters you estimate. Set the

argument multivariate = FALSE on gelman.diag.
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