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What is this course about?
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You can understand it.

▶ Rules of probability
▶ Conditioning and independence
▶ Law of total probability
▶ Factoring joint probabilities

▶ Distribution theory
▶ Markov chain Monte Carlo
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The Bayesian method
Existing theory, scientific 

objectives, intuition

Write deterministic 

model of process.

Design / choose 

observations.

A. Design 

Diagram relationship 

between observed and 

unobserved.

Write out posterior and joint 

distributions using general 

probability notation.

Choose appropriate 

probability distributions.

C. Model implementation

B. Model specification 

Write full conditional distributions.

Write MCMC sampling algorithm. Or
Write code for MCMC 

software.

Implement MCMC on simulated data.

D. Model evaluation and inference
Posterior predictive checks

Probabilistic inference from  

single model Model selection, 

model averaging 

Implement MCMC on real data.
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The MCMC algorithm

▶ Why MCMC?
▶ Some intuition about how it works for a single parameter

model
▶ MCMC for multiple parameter models

▶ Gibbs sampling (lab)
▶ Full-conditional distributions (MCMC II)
▶ Metropolis-Hastings algorithm (MCMC II)
▶ MCMC software (JAGS tomorrow)
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MCMC learning outcomes

1. Develop a big picture understanding of how MCMC allows us
to approximate the marginal posterior distributions of
parameters and latent quantities.

2. Understand and be able to code a simple MCMC algorithm.
3. Appreciate the different methods that can be used within

MCMC algorithms to make draws from the posterior
distribution.
3.1 Metropolis
3.2 Gibbs
3.3 Metropolis-Hastings

4. Understand concepts of burn-in and convergence.
5. Understand and be able to write full-conditional distributions
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Remember the marginal distribution of the data
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We have simple solutions for the posterior for simple models:

[φ |y] = beta

The prior α︷︸︸︷
α +y︸ ︷︷ ︸

The new α

,

The priorβ︷︸︸︷
β +n− y︸ ︷︷ ︸
The new β
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Problems of high dimension do not have simple solutions:

[θ1,θ2,θ3,θ4,z | y,u] =
∏

n
i=1[yi|θ1zi][ui|θ2,zi][zi|θ3,θ4][θ1][θ2][θ3][θ4]∫

....
∫

∏
n
i=1[yi|θ1zi][ui|θ2,zi][zi|θ3,θ4][θ1][θ2][θ3][θ4]dzidθ1dθ2dθ3dθ4
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What we are doing in MCMC?

Recall that the posterior distribution is proportional to the joint:
because the marginal distribution of the data

∫
[y|θ ][θ ]dθ is a

constant after the data have been observed.

Posterior︷︸︸︷
[θ |y] ∝

Joint︷︸︸︷
[y,θ ] (1)

Posterior︷︸︸︷
[θ |y] ∝

likelihood︷ ︸︸ ︷
[θ | y]

prior︷︸︸︷
[θ ] (2)

Factoring the joint distribution into a product of probability
distributions using the chain rule of probability is where we start all
Bayesian modeling. The factored joint distribution provides the
basis for MCMC.

10 / 55



Introduction Why MCMC? Intuition Writing an MCMC sampler

What we are doing in MCMC?
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What we are doing in MCMC?
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What are we doing in MCMC?

▶ The posterior distribution is unknown, but the likelihood is
known as a likelihood profile and we know the priors.

▶ We want to accumulate many, many values that represent
random samples proportionate to their density in the marginal
posterior distribution of each unobserved quantity of interest.

▶ MCMC generates these samples using the likelihood and the
priors to decide which samples to keep and which to throw
away.

▶ We can then use these samples to calculate statistics
describing the marginal distributions of the unobserved
quantities: means, medians, variances, credible intervals etc.
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What are we doing in MCMC?
The marginal posterior distribution of each unobserved quantity is
approximated by samples accumulated in the chain.
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What are we doing in MCMC?

15 / 55



Introduction Why MCMC? Intuition Writing an MCMC sampler

Metropolis updates

We keep the more probable members of the posterior distribution
by comparing a proposal with the current value in the chain.

k 1 2
Proposalθ ∗k+1

θ ∗ 2

Test P(θ ∗ 2)> P
(
θ 1
)

Chain(θ k) θ 1 θ 2 = θ ∗ 2
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Metropolis updates

We keep the more probable members of the posterior distribution
by comparing a proposal with the current value in the chain.

k 1 2 3
Proposalθ ∗k+1

θ ∗ 2
θ ∗ 3

Test P(θ ∗ 2)> P
(
θ 1
)

P(θ 2)> P
(

θ ∗ 3
)

Chain(θ k) θ 1 θ 2 = θ ∗ 2
θ 3 = θ 2
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Metropolis updates

We keep the more probable members of the posterior distribution
by comparing a proposal with the current value in the chain.

k 1 2 3 4 K
Proposalθ∗k+1

θ∗ 2
θ∗ 3 θ∗ 4 . . . .

Test P(θ∗ 2)> P
(

θ 1
)

P(θ 2 )> P
(

θ∗ 3
)

P(θ 3 )> P
(

θ∗ 4
)

. . . .

Chain(θ k ) θ 1 θ 2 = θ∗ 2
θ 3 = θ 2 θ4 = θ3
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Metropolis updates

[θ ∗k+1|y] =

likelihood︷ ︸︸ ︷
[y|θ ∗k+1]

prior︷ ︸︸ ︷
[θ ∗k+1]∫

[y|θ ][θ ]dθ

[θ k|y] =

likelihood︷ ︸︸ ︷
[y|θ k]

prior︷︸︸︷
[θ k]∫

[y|θ ][θ ]dθ

R = [θ ∗k+1|y]
[θ k|y]
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The cunning idea behind Metropolis updates

[θ ∗k+1|y] =

likelihood︷ ︸︸ ︷
[y|θ ∗k+1]

prior︷ ︸︸ ︷
[θ ∗k+1]

�����∫
[y|θ ][θ ]dθ

[θ k|y] =

likelihood︷ ︸︸ ︷
[y|θ k]

prior︷︸︸︷
[θ k]

�����∫
[y|θ ][θ ]dθ

R = [θ ∗k+1|y]
[θ k|y]
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When do we keep the proposal?

PR = min(1,R)

Keep θ ∗k+1 as the next value in the chain with probability PR and
keep θ k with probability 1−PR.
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When do we keep the proposal?

1. Calculate R based on likelihoods and priors.
2. Draw a random number, U from uniform distribution 0,1 If

R > U, we keep the proposal θ ∗k+1 as the next value in the
chain.

3. Otherwise, we retain θ k as the next value.
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A simple example for one parameter

▶ Joy is interested in estimating the proportion of frogs in a
county that are infected with Chytrid fungus.

▶ She is not very ambitious, so he only checks 12 frogs, 3 of
which are infected. She assumes there is no prior knowledge of
this proportion.

▶ How could she calculate the parameters of the posterior
distribution of the proportion of the frog population that is
infected (prevalence) on the back of a cocktail napkin?
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The model

[φ |y] ∝ binomial(y|n,φ)beta(φ |1,1)
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Sampling from the posterior
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Sampling from the posterior
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Sampling from the posterior
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Sampling from the posterior
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Sampling from the posterior
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Sampling from the posterior

The chain has converged when adding more samples does not
change the shape of the posterior distribution. We throw away
samples that are accumulated before convergence (burn-in).
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Intuition for MCMC for multi-parameter models
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Intuition for MCMC for multi-parameter models

[β0,β1,σ
2 | y] ∝

n

∏
i=1

normal(yi|g(β0,β1,xi),σ
2)

× normal(β0 | 0,10000)normal(β1 | 0,10000)
× uniform(σ2 | 0,100)

1. Set initial values for β0,β1,σ
2

2. Assume β1,σ
2 are known and constant. Make a draw for β0.

Store the draw.
3. Assume β0,σ

2 are known and constant. Make a draw for β1.
Store the draw.

4. Assume β0,β1 are known and constant. Make a draw for σ2.
Store the draw.

5. Do this many times. The stored values for each parameter
approximate its marginal posterior distribution after
convergence.
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Do Lab

33 / 55



Introduction Why MCMC? Intuition Writing an MCMC sampler

Implementing MCMC for multiple parameters
▶ Write an expression for the posterior and joint distribution using a DAG

as a guide. Always.
▶ If you are using MCMC software (e.g. JAGS) use expression for the

posterior and joint distribution as template for writing code. You are
done.

▶ If you are writing your own MCMC sampler or you simply want to
understand what JAGS is doing for you:
▶ Decompose the expression of the multivariate joint distribution into

a series of univariate distributions called full-conditional
distributions.

▶ Choose a sampling method for each full-conditional distribution.
▶ Cycle through each unobserved quantity, sampling from its

full-conditional distribution, treating the others as if they were
known and constant.

▶ The accumulated samples approximate the marginal posterior
distribution of each unobserved quantity.

▶ Note that this takes a complex, multivariate problem and turns it
into a series of simple, univariate problems that we solve, as in the
example above, one at a time.

34 / 55



Introduction Why MCMC? Intuition Writing an MCMC sampler

Definition of full-conditional distribution

Let θθθ be a vector of length k containing all of the unobserved
quantities we seek to understand. Let θθθ_j be a vector of length
k−1 that contains all of the unobserved quantities except θj. The
full-conditional distribution of θj is

[θj|y,,,θθθ_j],

which we notate as
[θj|·].

It is the posterior distribution of θj conditional on all of the
other parameters and the data, which we assume are known.
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Writing full-conditional distributions

▶ You will have one full-conditional for each unobserved quantity
in the posterior.

▶ For each unobserved quantity, write the distributions where it
appears.

▶ Ignore the other distributions.
▶ Simple.
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Example

▶ Clark 2003 considered the problem of modeling fecundity of
spotted owls and the implication of individual variation in
fecundity for population growth rate.

▶ Data were number of offspring produced by per pair of owls
with sample size n = 197.

Clark, J. S. 2003. Uncertainty and variability in demography and population growth: A hierarchical
approach. Ecology 84:1370-1381.
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Example

yi

�i

↵ �

[λλλ ,α,β |y] ∝

n

∏
i=1

Poisson(yi|λi)gamma(λi|α,β )

× gamma(α|.001, .001)gamma(β |.001, .001)
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Full-conditionals
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Writing full-conditional distributions

▶ You will have one full-conditional for each unobserved quantity
in the posterior.

▶ For each unobserved quantity, write the distributions
(including products) where it appears.

▶ Ignore the other distributions.
▶ Simple.
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Full-conditional for each λi
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Full-conditional for β
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Full-conditional for α
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Full-conditionals for the model

Posterior and joint:

[λλλ ,α,β |y] ∝

n

∏
i=1

Poisson(yi|λi)gamma(λi|α,β )

× gamma(α|.001, .001)gamma(β |.001, .001)

Full conditionals:
[λi|.] ∝ Poisson(yi|λi)gamma(λi|α,β )

[β |.] ∝

n

∏
i=1

gamma(λi|α,β )gamma(β |.001, .001)

[α|.] ∝

n

∏
i=1

gamma(λi|α,β )gamma(α|.001, .001)

44 / 55



Introduction Why MCMC? Intuition Writing an MCMC sampler

Implementing MCMC for multiple parameters and latent
quantities

▶ Write an expression for the posterior and joint distribution using a DAG
as a guide. Always.

▶ If you are using MCMC software (e.g. JAGS) use expression for posterior
and joint as template for writing code.

▶ If you are writing your own MCMC sampler:
▶ Decompose the expression of the multivariate joint distribution into

a series of univariate distributions called full-conditional
distributions.

▶ Choose a sampling method for each full-conditional distribution.
▶ Cycle through each unobserved quantity, sampling from the its

full-conditional distribution, treating the others as if they were
known and constant.

▶ Note that this takes a complex, multivariate problem and turns it
into a series of simple, univariate problems that we solve, as in the
example above, one at a time.
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Choosing a sampling method

1. Acept-reject:
1.1 Metropolis: requires a symmetric proposal distribution (e.g.,

normal, uniform). This is what we used above in the example
for one parameter.

1.2 Metropolis-Hastings: allows asymmetric proposal distributions
(e.g., beta, gamma, lognormal). A minor modification of
Metropolis. See optional notes.

2. Gibbs: accepts all proposals because they are especially well
chosen. Requires conjugates. In lab today.
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Why do you need to understand conjugate priors?

▶ A easy way to find parameters of posterior distributions for
simple problems.

▶ Critical to understanding Gibbs updates in Markov chain
Monte Carlo as you are about to learn.
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What are conjugate priors?

Assume we have a likelihood and a prior:
posterior︷︸︸︷
[θ |y] =

likelihood︷︸︸︷
[y|θ ]

prior︷︸︸︷
[θ ]

[y] .

If the form of the distribution of the posterior
[θ |y]
is the same as the form of the distribution of the prior,
[θ ]
then the likelihood and the prior are said to be conjugates
[y|θ ][θ ]︸ ︷︷ ︸
congugates

and the prior is called a conjugate prior for θ .
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Gibbs updates

When priors and likelihoods are conjugate, we know all but one of
the parameters of the full-conditional because they are assumed to
be known at each iteration. We make a draw of the single unknown
directly from its posterior distribution as if the other parameters
were fixed.

Wickedly clever.
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Gamma-Poisson conjugate relationship for λ

The conjugate prior distribution for a Poisson likelihood is
gamma(λ |α,β ). Given n observations yi of new data, the posterior
distribution of λ is

[λ |y] = gamma


The prior α︷︸︸︷

α0 +
n

∑
i=1

yi︸ ︷︷ ︸
The new α

,

The prior β︷︸︸︷
β0 +n︸ ︷︷ ︸

The new β

 . (3)
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Sampling from the Poisson-gamma conjugate:

Full conditional:

[λi | .] ∝ Poisson(yi | λi)gamma(λi | α,β ) (4)

Gibbs sample:

[λ k
i |yi] = gamma

The currentα︷︸︸︷
α

k−1 +yi,

The current β︷︸︸︷
β

k−1 +1

 . (5)

In R, this would be:
shape[k] = alpha[k-1] + y_i
rate[k] = beta[k-1] + 1
lambda[k,i] = rgamma(1, shape[k], rate[k])

51 / 55



Introduction Why MCMC? Intuition Writing an MCMC sampler

Gamma-gamma conjugate relationship

The conjugate prior distribution for the β parameter (rate) in a
gamma likelihood gamma(yi|α,β ) is a gamma distribution
gamma(β | α0,β0). Given n observations yi of new data, the
posterior distribution of β (assuming that α (shape) is known) is
given by:

[β |y] = gamma


The prior α︷︸︸︷

α0 +nα︸ ︷︷ ︸
The new α

,

The prior β︷︸︸︷
βo +

n

∑
i=1︸ ︷︷ ︸

The new β

yi

 . (6)

We can substitute any “known” quantity for y, e.g., λλλ in MCMC.
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Sampling from the gamma-gamma conjugate:

The full conditional:
[β |.] ∝

n
∏
i=1

gamma(λi|α,β )gamma(β |.001, .001)

Gibbs sample:

β k ∼ gamma
(
.001+nαk−1, .001+

n
∑

i=1
λ k

i

)
In R this would be:
shape[k] = .001 + length(y) * alpha[k-1]
rate[k] = .001 + sum(lambda[,k])
beta[k] = rgamma(1, shape[k], rate[k])
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MCMC algorithm

1. Iterate over i = 1...197

2. At each i, make a draw from

λ
k
i ∼ gamma

(
α

k−1 + yi, β
k−1 +1

)
︸ ︷︷ ︸

Gibbs update using gamma - Poisson conjugate for eachλi

(7)

β
k ∼ gamma

(
.001+α

k−1n, .001+
n

∑
i=1

λ
k
i

)
︸ ︷︷ ︸

Gibbs update using gamma - gamma conjugate for β

(8)

α
k

∝

n

∏
i=1

gamma
(

λ
k
i |αk−1,β k

)
gamma

(
α

k−1|.001, .001
)

︸ ︷︷ ︸
No conguate for α. Use Metropolis - Hastings update

(9)

3. Repeat for k = 1...K iterations, storing λ k
i ,α

k and β k. Store the value of each
parameter at each iteration in a vector.
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Inference from MCMC

Make inference on each unobserved quantity using the elements
of their vectors stored after convergence. These post-convergence
vectors, (i.e., the “rug” described above) approximate the marginal
posterior distributions of unobserved quantities.
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