Marginal Distributions

Alison Ketz

Slides adapted from Bailey Fosdick, Tom Hobbs, Chris Che-Castaldo, Mary B. Collins

Marginal distributions

In Bayesian analysis, our goal is to compute the joint distribution of the parameters and data:

[parameters | data] =
$$[eta_0,eta_1,\sigma^2,\mid y]$$

However, usually want to make inference on a single parameter. We are interested in the marginal (univariate) distribution, e.g. [Q + 1]

$$\begin{bmatrix} \beta_0 & \mid y \end{bmatrix} \\ \begin{bmatrix} \beta_1 & \mid y \end{bmatrix} \\ \begin{bmatrix} \sigma^2 & \mid y \end{bmatrix}$$

Why marginal distributions?

Ex: Discrete joint distribution

Suppose we are studying a species for which births occur in pulses. We observe 100 females and record the number of offspring each produced. Values in the cells of the table are probabilities.

	1	2	3
1	0.10	0	0
2	0.13	0.12	0.02
3	0.23	0.36	0.04

Y = number of offspring

X = age

Ex: Discrete marginal distribution

The probability that a bird produces one or more offspring is the marginal distribution of X.

	1	2	3	[x]	
1	0.10	0	0	0.10	
2	0.13	0.12	0.02	0.27	
3	0.23	0.36	0.04	0.63	

Y = number of offspring

X = age

Marginal (dist) of X

Ex: Discrete marginal distribution

The probability that a bird aged one year produces one or more offspring is the sum across row one.

	1	2	3		[x]
1	0.10	0	0		0.10
2	0.13	0.12	0.02		0.27
3	0.23	0.36	0.04		0.63

Y = number of offspring

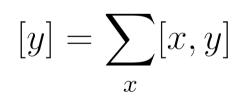
X = age

Marginal (dist) of X

Ex: Discrete marginal distribution

N

The probability that a bird produces one, two, or three offspring (regardless of age) is the marginal distribution of Y.


		1	2	3	[x]
X = age	1	0.10	0	0	0.10
	2	0.13	0.12	0.02	0.27
	3	0.23	0.36	0.04	0.63
Aarginal of Y ——	[y]	0.46	0.48	0.06	

Y = number of offspring

Discrete marginal distributions

[x,y] = P(X = x, Y = y) specifies the joint pmf of the discrete r.v.s X and Y

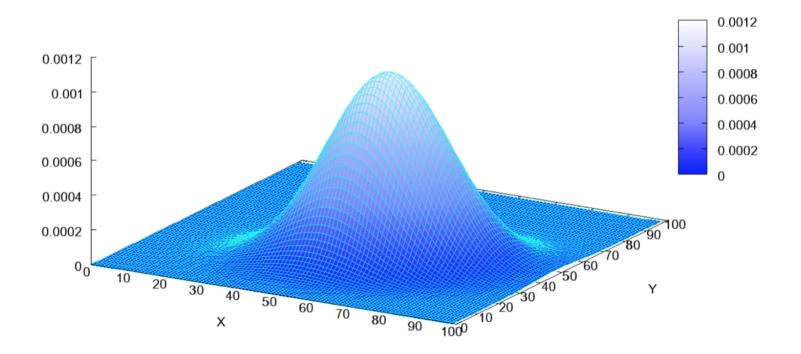
specifies the marginal pmf of x

 $[x] = \sum [x, y]$

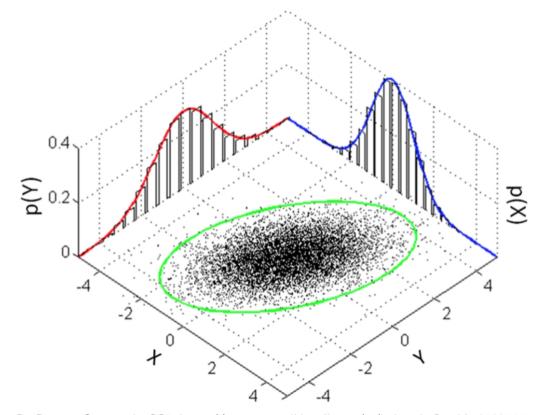
 $\boldsymbol{\mathcal{U}}$

specifies the marginal pmf of y

Discrete marginal distributions


Suppose we have many r.v.s: $\left[w,x,y,z
ight]$

The marginal distribution of X is


$$[x] = \sum_{w} \sum_{y} \sum_{z} [w, x, y, z]$$

Ex: Continuous joint distribution

Multivariate Normal Distribution

Ex: Continuous marginal distributions

By Bscan - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=25235145

Continuous marginal distributions

specifies the **joint pdf** of the r.v.s X and Y

$$[x] = \int_{-\infty}^{\infty} [x, y] dy$$

[x, y] = f(x, y)

specifies the marginal pdf of x

$$[y] = \int_{-\infty}^{\infty} [x, y] dx$$

specifies the marginal pdf of y

Marginal distributions (in general)

joint distribution of the r.v.s X, Y, and Z

(suppose X & Y discrete, Z continuous)

$$[x] = \int_{-\infty}^{\infty} \left(\sum_{y} [x, y, z] \right) dz$$

specifies the marginal pmf of x