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Overview

@ Mixture distributions

@ Example: Darwin’s Finches

@ Zero-inflated models

e Martin et al. (2005)

@ Zero-inflated Poisson Regression

© Occupancy Models
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Introduction

Two-component Mixture Distribution:

[y|61,02, p] = ply|61]1 + (1 — p)[y|62]2

e 0<p<1
e [y|61]1 and [y|@]> integrate to 1



Introduction

Two-component Mixture Distribution:

[¥|61,602,p] = ply|61]1 + (1 — p)[y|02]2
e 0<p<1
@ [y|01]1 and [y|62]> integrate to 1
K-Mixture Distribution:

K
[y01,....0k,p] = Y PrlylOkl«
k=1

@ px >0 for all k.

° ZkK:1 px = 1.
o all [y|@]« integrate to 1.
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Example: Darwin’s Finches
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Example: Darwin's Finches

Model (Hendry et al. 2006):

yiNp'N(“1702)+(1_p)'N(”2702)
ei=1,...,n

o [l # Uy
e 0<pxl1



Example: Darwin's Finches

Use latent (auxiliary) variables to make the mixture model hierarchical:

- JN(m,0%) ifz=1
Vi N([Jz,Gz) if Z,'ZO

where
z; ~ Bern(p)

p~17?
py ~ 777
Up ~ 777
02~ 777



Example: Darwin's Finches

Use latent (auxiliary) variables to make the mixture model hierarchical:

] N(,LL1,62) ifZ,':].
Vi N([.l2,62) if Z,'ZO

where
z; ~ Bern(p)

p ~ Beta(a, B)
i1 ~ N(to,03)
i ~ N(to, 53)
6% ~1G(r,q)
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Mixture Model DAG



-
Implementation in JAGS

[ﬂlaH27G2az7P|Y] o< (Iﬂl[)/i\ﬂlacz]zi[)/i|#2a62]1Z"[Zi‘P]) [p][[,ll][uz][02]

model{
mul ~ dnorm(mulO,taul0)
mu2 ~ dnorm(mu20,tau20)
tau ~ dgamma(.01,.01)
p ~ dbeta(1,1)

for(i in 1:n){
y[i]l ~ dnorm(z[i]l*mul+(1-z[i])*mu2,tau)
}
for(i in 1:n){
z[i] ~ dbin(p,1)
}

}
B 7



Implementation in JAGS

for(i in 1:n){
y[i] ~ dnorm(z[il*mul+(1-z[i])*mu2,taun)
}

Equivalently, compute mixture parameters in a separate line. ..

for(i in 1:n){
mu.mix[i] <- z[i]*mul+(1-z[i])*mu?2
y[i] ~ dnorm(mu.mix[i],tau)



Data Analysis: Darwin’s Finches
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Data Analysis: Darwin’s Finches
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-
Implementation in JAGS

Making inference on the individual mixture components can be
complicated by the fact that the labeling of “component 1" and
“component 2" is arbitrary. One way to resolve this is to label them based
on their moments, e.g. mean value.

This can be accomplished by requiring mus > p1. This is enforced in
JAGS using the truncation function:

modelq{
mul ~ dnorm(mulO,taul0)
mu2 ~ dnorm(mu20,tau20) T(mul,). # mu2 will be greater than mul
tau ~ dgamma(.01,.01)
p ~ dbeta(l,1)

0 D -
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Zero-inflated mdoels: Martin et al. (2005)

Ecology Letters, {2005) 8: 1235-1246 doi: 10.1111/].1461-0248.2005.00826.x
REVIEWS AND
SYNTHESES Zero tolerance ecology: improving ecological
inference by modelling the source of zero
observations
Abstract
Tara G. Martin,'* Brendan A common feature of ecological data sets is their tendeney to contain many zero values.
A. Wintle," Jonathan R. Rhodes,”  Searistical infersnee based on such data are likely to be inefficient or wrong unless careful
Petra M. Kuhnert,” Scott . thought is given to how these zeros zrose and how best to model them. In this paper, we
A.Field,” sama:'_"'h" 1. Low-Chay, propose a framework for understanding how zero-inflaved dats sets originate and
z‘":om'" ;'“'e‘ and Hugh deciding how best to model them. We define and classify the different kinds of zeros
. Possingham

that oceur in ecologieal data and deseribe how they ariser either from ‘true zero” or “false
zero” observations, After reviewing recent developments in modelling zero-inflated daca
ses, we use practical examples to demonstrate how failing to secount for the source of
zero inflation can reduce our shility to detect relationships in ecological data and at worst
lead to incorrect inference. The adoption of methods that explicidy model the sourees of
zern observations will sharpen insiphts and improve the mbustness of ecological
analyses.

Keywords
Bayesian inference, di:tt:cti{l]ilit}', excess zeros, false negative, mixture model, ohservation
error, sampling error, zero-inflated binomial, zero-inflazed Poisson, zero inflaton,
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Zero-inflation as a mixture model

Imagine that you sampled many plots along a coastline, counting the
number of species of mussels within each plot. In essence there are two
sources of zeros.

@ Some zeros arise because the plot was placed areas that are not
mussel habitat, while other zeros occur in plots placed in mussel
habitat but that contain no mussels as a result of sampling variation.

@ The Poisson distribution offers a logical choice for modeling the
distribution of counts in mussel habitat, but it cannot portray the
zeros that arise because plots were placed in areas where mussels
never live.
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-______________________________________________
Zero-inflated models: Martin et al. (2005)
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Poisson regression model

Suppose we start by modeling the data with a Poisson regression model.

yi ~ Poison(4;)
log(A;) = x;3
B ~ Normal(p, X)
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Poisson regression model - DAG



Zero-inflated Poisson regression model

] 0 , Zf = 0
Yi Poison(4;) ,z =1

z; ~ Bernoulli(p)
log(A;) = x; 8

B ~ Normal(p, X)

p ~ Beta(oy, ap)

#+# Zero-inflated Poisson regression model - DAG
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Implementation in JAGS

model{
beta ~ dmnorm(mu0,Taul)
p ~ dbeta(1,1)

for(i in 1:n){
y[i]l ~ dpois(z[il*lam[i])
}
for(i in 1:n){
z[i] ~ dbin(p,1)
log(lam[i]) <- X[i,1:ppl%x%beta
}
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Other applications of mixture models

@ Occupancy models
@ Capture-recapture models

© Serology models with imperfect tests (sensitivity /specificity)
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