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Work flow: probability distributions

▶ General properties and definitions
▶ discrete random variables
▶ continuous random variables

▶ Specific distributions (cheat sheet and Probability Lab 2)
▶ Marginal distributions (Probability Lab 3)
▶ Moment matching (Probability Lab 4)
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Why moment matching?

Remember yesterday’s Probability lab 2 where you were told to use
a normal distribution to model the data and then asked why that
was a bad choice? A better choice would be a distribution with
non-negative support. How do you model the data using these
distributions? Same problem for modeling proportions (zero to one
support).
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Motivation: flexibility in analysis
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Motivation: flexibility in analysis

Probability model Support for random variable

normal all real numbers

lognormal non-negative real numbers

gamma non-negative real numbers

beta 0 to 1 real numbers

Bernoulli 0 or 1

binomial counts in 2 categories

Poisson counts

multinomial counts in > 2 categories

negative binomial counts

Dirichlet proportions in ≥ 2 categories

Cauchy real numbers
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Board work on normal data model
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The problem

All distributions have parameters:

α and β are parameters of the distribution of the random variable
yi.
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Types of parameters

Parameter name Function
intensity, centrality, location sets position on x axis
shape controls dispersion and skew
scale, dispersion parameter shrinks or expands width
rate scale-1
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The problem

The normal and the Poisson are commonly used distributions for
which the parameters of the distribution are the same as the
moments. For all other distributions we will use, the parameters
(e.g., α,β ) are functions of the moments.

α = f1(µ,σ2)

β = f2(µ,σ2)

We can use these functions to “match” ’ the moments to the
parameters,allowing use to “insert the mean” predicted by our
model into the distribution.
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Moment matching the gamma distribution

The gamma distribution: [z|α,β ] = β α zα−1e−β z

Γ(α)

The mean of the gamma distribution is

µ =
α

β

and the variance is
σ

2 =
α

β 2 .

Discover functions for α and β in terms of µ and σ2.
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Answer

1)µ = α

β

2)σ2 = α

β 2

Solve 1 for β , substitue for β in 2), solve for α :
3) α = µ2

σ2

Substitute rhs 3) for α in 2), solve for β :
4) β = µ

σ2
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Example

Lets reconsider the mean above ground biomass problem from
yesterday. How would model the data using a gamma distribution?

yi ∼ gamma
(

µ2

σ2 ,
µ

σ2

)
Or, if you had a model that predicts the mean as a function of the
covariate xi and the parameters θ , µi = g(θ ,xi)

yi ∼ gamma
(

µ2
i

σ2 ,
µi

σ2

)
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Moment matching two parameters in the beta distribution

The beta distribution gives the probability density of random
variables with support on 0, ...,1.

[z|α,β ] = zα−1(1−z)β−1

B(α,β )

B = Γ(α+β )
Γ(α)Γ(β )

13 / 19



You need some functions...

#BetaMomentMatch.R
# Function for parameters from moments
shape_from_stats <- function(mu, sigma){
a <-(mu^2-mu^3-mu*sigma^2)/sigma^2
b <- (mu-2*mu^2+mu^3-sigma^2+mu*sigma^2)/sigma^2

shape_ps <- c(a,b)
return(shape_ps)
}
# Functions for moments from parameters
beta.mean=function(a,b)a/(a+b)
beta.var = function(a,b)a*b/((a+b)^2*(a+b+1))
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Moment matching for a single parameter illustrated with the
beta distribution

We can solve for α in terms of µ and β ,

µ =
α

α +β
(1)

α =
µβ

1−µ
, (2)

which allows us to use

µi = g(θ ,xi) (3)

yi ∼ beta
(

µiβ

1−µi
,β

)
(4)

to moment match the mean alone.
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Moment matching for a single parameter illustrated with the
lognormal distribution

The first parameter of the lognormal = α , the mean of the random
variable on the log scale. The second parameter = σ2

log, the
variance of the random variable on the log scale
We often moment match the median the lognormal distribution:

median = µi = g(θ ,xi) (5)
µ = eα (6)
α = log(µi) (7)
yi ∼ lognormal(log(µi),σ

2
log) (8)

In this case, σ2 remains on log scale.
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Data transformation: An alternative to moment matching

proportions (zero to one)

µi =
exp(β0 +β1xi)

1+ exp(β0 +β1xi)

logit(yi)∼ normal(logit(µi),σ
2)

logit(yi) = log
(

yi

1− yi

)
strictly non-negative (zero to infinity)

µi = exp(β0 +β1xi)

log(yi)∼ normal(log(µi),σ
2)
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Transforming as an alternative

▶ Can speed MCMC convergence particularly if you use a glm
module.

▶ May not fit as well as moment matched approach (or might fit
better).

▶ Error prone interpretation.
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Problems continued

Do Probability Lab 4
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