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Outline

Examples when vague priors cause problems!

Priors for group-level variances in hierarchical models

Priors for non-linear models illustrated with the inverse logit
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Review
Recall that the posterior distribution represents a balance between the
information contained in the likelihood and the information contained in
the prior distribution.

θ

An informative prior influences the posterior distribution. A vague prior
exerts minimal influence.
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Vague priors

A vague prior is a distribution with a range of uncertainty that is clearly
wider than the range of reasonable values for the parameter (Gelman and
Hill 2007:347).

Also called: diffuse, flat, automatic, nonsubjective, locally uniform,
objective, and, incorrectly, “non-informative”
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Vague priors

Vague priors are provisional in two ways:

Operationally provisional: We try one. Does the output make sense?
Are the posteriors sensitive to changes in parameters of the prior?
Are there values in the posterior that are simply unreasonable? We
may need to try another type of prior.

Strategically provisional: We use vague priors until we can get
informative ones, which we prefer to use.

5 / 29



Problems with excessively vague priors

Computational: failure to converge, slicer errors, failure to calculate
log density, etc.

Cause pathological behavior in posterior distribution, i.e, values
are included that are unreasonable.

Sensitivity: changing the parameters of “vague” priors meaningfully
changes the posterior.

Non-linear functions of parameters with vague priors have
informative priors. AHH!
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Ex: Educational testing experiments in schools (Gelman et
al. 2013, sec 5.5)

A study was performed for the Educational Testing Service to analyze the effects
of special coaching programs for SAT-V (Scholastic Aptitude Test-Verbal) in
each of eight high schools. The outcome variable in each study was the score on
a special administration of the SAT-V; the scores can vary between 200 and 800,
with mean about 500 and standard deviation about 100.

For each of the 8 schools (J = 8), we have an estimated treatment effect yj
and a standard error of the effect estimate (sdj). The treatment effects in
the study were obtained by a linear regression on the treatment group using
PSAT-M and PSAT-V scores as control variables.
“As there was no prior belief that any of the schools were more or less
similar or that any of the coaching programs would be more effective, we
can consider the treatment effects as exchangeable.”
(https://www.tensorflow.org/probability/examples/Eight_Schools )
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Hierarchical model

yj ∼ normal(θj ,ς
2
j )

θj = µ + ηj

ηj ∼ normal(0,σ2
θ )

µ ∼ normal(0,100000)
σ

2
θ ∼ ?

What is the interpretation of σ2
θ
?

What prior distributions might we consider for σ2
θ
?
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Hierarchical model
yj ∼ normal(θj ,ς

2
j )

θj = µ + ηj

ηj ∼ normal(0,σ2
θ )

µ ∼ normal(0,100000)
σ

2
θ ∼ ?

is equivalent to

yj ∼ normal(θj ,ς
2
j )

θj ∼ normal(µ,σ2
θ )

µ ∼ normal(0,100000)
σ

2
θ ∼ ?

What if we had individual test scores? What else do we need?
(Draw DAG/Write Model)
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If we had individual test scores. . .

yij ∼ normal(θj ,ς
2
j )

θj = µ + ηj

ηj ∼ normal(0,σ2
θ )

µ ∼ normal(0,100000)
σ

2
θ ∼ ?
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σθ ∼ uniform(0,1000), τ = 1
σ2 , 8 schools

MCMC ouptut, uniform prior on σθ

8 schools
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τ ∼ gamma(.001, .001), 8 schools

MCMC ouptut, gamma prior on τ

8 schools
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Data - 3 schools
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σθ ∼ uniform(0,1000), τ = 1
σ2 , 3 schools – YIKES!

MCMC ouptut, uniform prior on σθ

3 schools
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The Cauchy distribution

[x |γ,x0] = 1
πγ

[
1+

(
x−x0

γ

)2
]

x0 = location, γ = scale
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A weakly informative prior on σθ

half-Cauchy prior:
σθ ∼ Cauchy(0,γ)T(0,)

The scale parameter γ is chosen based on experience to be a bit higher
than we would expect for the standard deviation of the underlying θj ’s.
This puts a weak constraint on σθ . An equivalent formulation is the half
t-distribution,

σθ ∼ t(0,γ2,1)T(0,)

which can be coded in JAGS using

sigma_theta ~ dt(0,1/gamma^2,1)T(0,)

or, alternatively,

tau_theta ~ dscaled.gamma(gamma,1)
sigma_theta = 1/sqrt(tau_theta)
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A more reasonable posterior (γ = 25)
MCMC ouptut, half−Cauchy prior on σθ

3 schools
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σθ ∼ Cauchy(0,25)T(0,)
## Guidance

Uniform priors on σ are recommended over gamma priors on group
level variances in hierarchical models with at least 5 groups.

When groups are ≤ 4, a half-Cauchy prior can usefully constrain the
posterior of group level σ ’s.

This illustrates that it can be useful to use weakly informative priors
when vague priors produce posteriors with unreasonable values.
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Priors on nonlinear functions of parameters

pi = g(β,xi) = eβ0+β1xi

1+ eβ0+β1xi

[β|y] ∝

n

∏
i=1

Bernoulli(yi |g(β,xi))×

normal(β0|0,250000)normal(β1|0,250000)
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Priors on nonlinear functions of parameters
variance =  25

β0
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Priors on nonlinear functions of parameters
variance =  1
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When vague priors cause problems. . . Ex: Lizards on Islands

The probability of occupancy of islands p by lizards as a function of the
ratio of the islands’ perimeter to area ratios (Polis et al., 1998). Recall
the data set from the JAGS lab:

g(β0,β1,xi) = eβ0+β1xi

1+ eβ0+β1xi

yi ∼ Bernoulli(pi = g(β0,β1,xi))

β0 ∼ normal(0,σ2
β0

)

β1 ∼ normal(0,σ2
β1

)

How should we specify σ2
β0

?
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Default variance on β0 prior
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Posterior inference on β0 impacted by prior!
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What if we had more data?

Suppose were replicate the data 4 times. . .
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Now the data overwhelms the prior :) But we don’t have this much
data. . .
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What if we standardize the data?
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Posterior distributions look more similar but still notably different.
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Slightly more informed priors with original data
Recall our original priors on the regression coefficients:

β0 ∼ normal(0,σ2
β0

)

β1 ∼ normal(0,σ2
β1

)

Now consider

β0 ∼ normal(3,σ2
β0

)
β1 ∼ normal(−1,σ2

β1
)

We center β0 on 3 using the reasoning that large islands are almost
certainly (p=.95 at PA = 0) occupied.

Choosing a negative value for the slope make sense because we know
the probability of occupancy goes down as islands get smaller.
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Weakly informative priors on parameters
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Posterior distributions on β0 align nicely!
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Guidance

Always use informed priors when you can.

Always examine sensitivity of marginal posteriors to variation in priors
for non-linear models.

Vague priors for non-linear models should be centered on reasonable
values.

Consider standardizing data for non-linear models.

Use Cauchy prior on group-level variances when only a few groups.
See Gelman et al. 2008 for details.1

Group level variances for fewer than four or five groups will often
need sensibly informed half-Cauchy priors.

1Gelman, A., A. Jakulin, M. G. Pittau, and Y. S. Su. 2008. A weakly informative
default prior distribution for logistic and other regression models. Annals of Applied
Statistics 2:1360-1383.
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