Capture-Recapture

Overview

Occupancy

- Binary data indexed by site and visit;
- Accounts for imperfect detection (false-negative);
- Assumes population closure;
- The "mixture" component accounts for sampling process mechanistically.

Capture-Recapture

- Binary data indexed by individual and capture history;
- Accounts for imperfect detection;
- Assumes population closure;
- The "mixture" component (data augmentation) allows inference on abundance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Capture-Recapture 00000

Occupancy Data

 $y_1 = 1$

 $y_3 = 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Capture-Recapture 00000

Occupancy Data

$$y_{i,j} \in \{0,1\}$$
Site $i=1,\ldots,$

Site
$$i = 1, \ldots, n$$

Visit $j = 1, \ldots, J_i$

$$y_i = \sum_{j=1}^{J_i} y_{i,j}$$

i	Уi,1	Уi,2	Уi,3	Уi
1	0	1	0	1
2	1	1	0	2
3	0	0	1	1
4	0	0	0	0
5	0	0	0	0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Occupancy Model

Suppose there are J_i visits for each site (i = 1, ..., n):

$$y_i \sim egin{cases} 0 & , \ z_i = 0 \ {\sf Binom}(J_i, p) & , \ z_i = 1 \end{cases}$$

 $egin{aligned} & z_i \sim \operatorname{Bern}(\psi_i) \ & \log \operatorname{it}(\psi_i) = \mathbf{x}_i' eta \ &
ho \sim \operatorname{beta}(a, b) \ & eta \sim \operatorname{N}(\mu_eta, \mathbf{\Sigma}_eta) \end{aligned}$

Capture-Recapture 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Draw The DAG

Capture-Recapture 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

JAGS Implementation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Extensions

- Detection probability (p) varies by site;
- Detection probability varies by site and visit;
- Spatial/temporally correlated occupancy probability (ψ);

• ...

Capture-Recapture

Capture-Recapture Data & Model

$$y_i \sim egin{cases} 0 & , \ z_i = 0 \ {\sf Binom}(J,p) & , \ z_i = 1 \end{cases}$$

Individual $i = 1, \ldots, M$

$$egin{aligned} &z_i \sim \mathsf{Bern}(\psi) \ &\psi \sim \mathsf{Beta}(a_\psi, b_\psi) \ &p \sim \mathsf{beta}(a_p, b_p) \end{aligned}$$

-				
i	У <i>i</i> ,1	Уі,2	Уi,3	Уi
1	0	1	0	1
2	1	1	0	2
3	0	0	1	1
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
		•	•	
•				
Μ	0	0	0	0

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data Augmentation

Specifying super-population size, M, and prior on membership probability, ψ , implies a prior on abundance, N.

$$N = \sum_{i=1}^{M} z_i, \ z_i \sim \text{Bern}(\psi) \Rightarrow N \sim \text{Binom}(M, \psi)$$

For example,

$$\psi \sim \mathsf{Unif}(0,1) \Rightarrow \mathsf{N} \sim \mathsf{DiscUnif}(0,\mathsf{M})$$

 $\psi \sim \mathsf{Beta}(a_{\psi} \to 0, b_{\psi} = 1) \Rightarrow [\mathsf{N}] \propto 1/\mathsf{N}$

Capture-Recapture

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Draw The DAG

Capture-Recapture

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

JAGS Implementation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Extensions

- Detection probability (p) varies by capture occasion;
- Detection probability varies by individual, need to augment individual covariates for super-population;
- Temporal dependence in capture history;

Capture-Recapture ●0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Hobbs, N.T. and M.B. Hooten. (2015). Bayesian Models: A Statistical Primer for Ecologists. Princeton University Press.

Hooten, M.B. and T.J. Hefley. (2019). Bringing Bayesian Models to Life. CRC Press.