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Note!
Slides adapted from Bailey Fosdick, Chris Che-Castaldo, Mary B. Collins, and N.
Thompson Hobbs

This is a crash course in basic probability concepts. Please stop me at any time if
you have questions!



Probability Concepts and
Notation



Motivation
A general approach to scientific research:



What you must know and why
Concept Why learn?

Conditional probability It is the foundation for Bayes’ Theorem and all inferences we will make.

Law of Total Probability Basis for the denominator of Bayes’ Theorem .

Factoring joint
distributions

Procedure used to build models.

Independence Allows us to simplify full factored joint distributions.

Probability distributions Our toolbox for fitting models to data and representing uncertainty.

Moments A way we can summarize distributions.

Marginal distributions Bayesian inference is based on marginal distributions of unobserved
quantities.

Moment matching Allows us to embed the predictions of models into any statistical
distribution.
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More motivation
Why Bayes? Bayesian analysis is the only branch of statistics that treats all
unobserved quantities as random variables. We seek to understand the
characteristic of the probability distributions governing the behavior of these
random variables.

Why models? A model of the data describes our ideas of how the data arise.

Different types of data (e.g. real numbers, counts, proportions, ordinal
categories) and knowledge about the underlying process will require different
types of models.

Deterministic vs. probabilistic



Topics we will cover now
Random variables

Discrete vs. continuous distributions

Moments (mean and variance)

Cumulative density function

Quantile functions

Working with probability distributions in R
Monte Carlo integration



Functions and variables
Consider the following function for the equation of a line:

Note  is a function of . For fixed values of  and , each value  gets
mapped to a single .

 may be considered the variable of interest.

y = mx + b

y = f (x) x m b x
f (x)

x



Random variables
You have previously learned that the sample space is the set of all possible
outcomes of a random process.

A random variable (R.V. or r.v.) is a function from a particular sample space to the
real numbers

Random variables represent the outcome of a random process using values on
the real line. They are a mathematical formalization of a quantity or object
which depends on random events (Wikipedia)

Previously you discussed the probability of events, which are associated with
specific values of a r.v.

Note: we typically denote random variables by Roman letters (e.g.   or  for
data) and Greek letters (e.g.   and  for population parameters)

X Y
θ α



Examples
Random
process

Flip a fair coin one time Flight time of bird recorded

Possible
outcomes

Heads or Tails Any amount of time

Random
variable

 number of Heads  time of flight

Support

Possible
probabilities of
interest

Evaluating these probabilities of interest will require adding some probability
concepts to our toolkit!

X = Y =

= {0, 1}SX : y > 0SY
Pr(Heads) = Pr(X = 1) Pr(at least 2 hours) = Pr(Y > 2)



A note on notation
The notation I use during the board work will feature both:

1. Notation you might find in a probability textbook (functional notation), and

2. Notation used in Hobbs and Hooten (bracket notation)

The notation in (2) is simpler and can be much more intuitive and easy to read, and
serves our purposes well when we get to building models.

The notation in (1) is a bit more technical (we explicitly distinguish between random
variables and outcomes), which means we can be a bit more specific.



Board work



Probability Distributions and R



Common distributions
Some distributions are so “common” that we give them specific names. Look to
the distribution sheet!

The shape/behavior of each distribution is determined by a specific set of
parameters.

E.g.  for . All
Bernoulli distributions have this functional form. But  versus 
will lead to different outputs for a given value .

The parameters specify the exact shape of the distribution, and therefore, affect
the moments of the distribution.

X ∼ Bernoulli(θ) ⇒ P(X = x) = [x] = (1 − θθx )x x ∈ {0, 1}
θ = 0.25 θ = 0.5

x



Flexibility in analysis
It’s up to you to determine/justify if your random variable’s behavior is characterized by one of these
common distributions.

How? Narrow down choices via continuous vs discrete, looking at support, think about what the
random process.

Once you’ve selected a distribution, don’t forget to identify the parameters.

Probability model Support for random variable

Normal real numbers

Multivariate normal vector of real numbers

Lognormal positive real numbers

Gamma positive real numbers

Beta real numbers on [0,1] or (0,1)

Bernoulli 0 or 1

Binomial counts in two categories with an upper bound

Poisson counts

Multinomial counts in more than two categories

Negative binomial counts

Dirichlet proportions in two or more categories

real numbers

Cauchy real numbers

t



Working with distributions in R
p***(x,...): CDF function; returns
cumulative probability  x
q***(p,...): quantile function;
returns value  such that probability of

 is p (or at least p if discrete)

d***(x,...): PDF/PMF: returns
density at or probability of x
r***(n,...): random generator;
returns n random values from the
distribution

Must specify the specific parameter
values in ... Type ?function into
Console for details.

https://www.stat.umn.edu/geyer/old/5101/rlook.html

≤

x
≤ x



Distributions in R: example
Let  represent the observed temperature of a certain stream. Someone tells you
that .

Take a look at the distribution sheet. What do you think the values  and 
represent?

What R code would you type to evaluate ?

What R code would you type to evaluate ?

X
X ∼ Normal(50, 25)

50 25

Pr(X < 45)
Pr(40 < X < 45)



Distributions in R: example (cont.)
Let  represent the observed temperature of a certain stream. Someone tells you
that .

What R code would you type to evaluate ?

What R code would you type to evaluate ?

X
X ∼ Normal(50, 25)

Pr(X < 45)
pnorm(q = 45, mean = 50, sd = sqrt(25))1

[1] 0.1586553

Pr(40 < X < 45)
pnorm(q = 45, mean = 50, sd = sqrt(25)) - pnorm(q = 40, mean = 50, sd = sqrt(25))1

[1] 0.1359051



Monte Carlo Integration
Basic idea: we can estimate any property of a distribution using a large number of
random samples from the distribution.

Question: what is each line of code doing?
n <- 10001
samps <- rpois(n, lambda = 4) 2
samps[1:5] 3
mean(samps) 4
var(samps)5
sum(samps > 7)/n 6



Monte Carlo Integration (cont.)
n <- 10001
samps <- rpois(n, lambda = 4)   # simulate n = 1000 Poisson(4) random variables2
samps[1:5]                      # take a look at the first five samples3

[1] 3 3 4 7 2

mean(samps)                     # estimate the mean of Poisson(4) dist.1

[1] 4.018

var(samps)                      # estimate the variance of Poisson(4) dist1

[1] 4.057734

sum(samps > 7)/n                # estimate Pr(X > 7) where X ~ Poisson(4)1

[1] 0.054

1 - ppois(q = 7, lambda = 4)    # compare to true probability1

[1] 0.05113362



Your turn!
Barn swallows form pair bonds (male/female pairings) in the spring before mating
season. Each male/female pair shares a nest and cares for the offspring of the
female. Often a number of the female’s offspring were sired by males other than her
mate. Suppose previous literature suggests the probability that an offspring’s father
is the female’s bond mate is 0.8.

Task: Calculate the probability that a female with five offspring will have less
than or equal to one offspring whose father is the female’s mate.

Probability problem solving recipe:

1. Define the random variable(s), and write the desired probability or quantity in terms of random
variable(s)

2. Identify the distribution of the r.v.’s and any relevant parameters

3. Draw a picture (if applicable)

4. Calculate the desired probability or quantity (possibly using R)




