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Overview

Motivation.

¢ Overview of Spatial Statistics.
Continouous Spatial Processes:
Spatial correlation and covariance functions.
Simulating spatial random processes.
Assumptions.
Small-scale variability.
Assessing spatial dependence.

¢ Variograms and Covariograms.
Geostatistical Modeling.

® Bayesian model formulation.
® Bayesian Kriging.
® Generalized spatial models.
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Abstract

Accomodation of important sources of uncertainty in ecological models is essential to realistically predicting
ecological processes. The purpose of this project is to develop a robust methodology for modeling natural pro-
cesses on a landscape while accounting for the variability in a process by utilizing environmental and spatial
random effects. A hierarchical Bayesian framework has allowed the simultaneous integration of these effects.
This framework naturally assumes variables to be random and the posterior distribution of the model provides
probabilistic information about the process. Two species in the genus Desmodium were used as examples to il-
lustrate the utility of the model in South.east Mlssoun USA. In addlucn two validation technigues were applied
to evaluate the gualitative and quantitativ istics of the pred

Mevin Hooten Spatial Models  3/29



Overview of Spatial Statistics
Spatial Statistics

Hooten et al. (2003)

MOFEP Area

[] Counties
M Sites

Missouri

Mevin Hooten Spatial Models  4/29



Overview of Spatial Statistics

Hooten et al. (2003)

. N
Site 1

Site 2

Prediction Domain

Mevin Hooten

Spatial Models

5/29




Overview of Spatial Statistics

Spatial Statistics

Hooten et al. (2003)

Hooten Spatial Models 29



Overview of Spatial Statistics

Spatial Statistics

Hooten et al. (2003)

LAND TYPE ASSOCIATION VARIABLE DEPTH SOIL

1

20 40 60 B0 100 120

| Models  7/29



Overview of Spatial Statistics
Spatial Statistics

Hooten et al. (2003)

Pixel-Level Distributional Information

Predicted Distribution

w

Density

00 02 04 06
Probability

Hooten Spatial Models  8/29




Overview of Spatial Statistics
Spatial Statistics

Spatial Processes

© Spatial Point Processes: Random locations are of
interest, sometimes associated point characteristics
(“marks”).

@ Continuous Spatial Processes: Random measurements
at fixed locations are of interest.

© Areal Spatial Processes: Random measurements in fixed
regions are of interest.
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Continuous Spatial Processes
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Continuous Processes

Spatial Regression
Descriptive Statistics

Imagine a smooth 2-D function

y(s) = p(s)+e(s) ,wheres € R

© . First order, the mean
effect, a trend.

@ =: Second order, often
thought of as correlated
error.
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Gaussian Spatial Regression

y=XB+e, &?NN(O,Z)
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Gaussian Spatial Regression

y=XB+e, &'NN(O,Z)

© First Order Structure: X3, the trend.

@ Second Order Structure: e, where X can explain various
forms of spatial autocorrelation.

© Prediction: Kriging.

Note: This is referred to as “model-based geostatistics.”
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Covariance function: Covariogram

Parametric Covariance Functions:

* Exponential: ¥, ; = 0% exp (_ d;j)

2
dz

* Gaussian: 3, ; = 0% exp (_(7])

Note: d; ; = distance between locations ¢ and ;.
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Continuous Processes

Parameteric Covariance Functions

=  Exponential
D = = = (Gaussian
.
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Important Assumptions

e Stationarity: spatial structure does not vary with location.

e Isotropy: spatial structure does not vary with direction.
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Two Sources of Error

Random Effects Approach:

y=XB+n+e

@ Correlated Error: n ~ N(0,X)

©® Uncorrelated Error: € ~ N(0, 02I)
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Two Sources of Error

Hierarchical Approach:

y ~N(XB +n,021)

n ~ N(0,X)
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Two Sources of Error

Hierarchical Approach:

y ~N(XB +n,021)

n ~ N(0,X)
These both imply:

y ~N(XB, % + ¢21)
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Simulate a correlated continuous
spatial process

© Choose locations s; fori =1,...,n.

@ Choose the mean u. This could be a scalar or it could vary
spatially.

© Choose range parameter ¢ and variance component o2.

@ Compute distance matrix D between all n locations of
interest.

© Calculate covariance matrix ¥ = o2 exp (—%).

® Sample the n-dimensional vector y ~ N(u, X).
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Continuous Processes
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Assess the spatial correlation in a
data set

@ Assume y is measured at n spatial locations.
@ Compute the residuals: e =y — p.

@ Examine the residuals e for spatial correlation (i.e.,
autocorrelation).

Mevin Hooten Spatial Models  19/29



Spatial Regression
Descriptive Statistics

Continuous Processes

Estimating spatial correlation
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Continuous Processes
Descriptive Statistics

Fitted Variogram

Classic Estimation:

¢ After the empirical variogram is estimated at several bins
for d, one can fit a parametric model to it.

¢ In this case, use 9(d) as the response variable and d as the
covariate in weighted least squares or nonlinear regression
to estimate o2, ¢.
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Descriptive Statistics

Semi-Variogram, Variogram, and
Covariogram

¢ Semi-Variogram: ~y(d)
¢ Variogram: 2~(d)
e Covariogram: cov(d) = cov(0) — y(d)
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Bayesian Geostatistical Model

* Goal: use Bayesian methods to estimate 3, o2, and ¢.

y ~N(X3, %)
° %, =0%exp (— d;;j).
* 02 ~1G(q,7).

* Many choices for ¢ ~ [¢].

Posterior:

18,02, ¢yl = ¢ x [y|B, 0, ¢][8][0*][4]
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Prior Selection

Choices for range parameter ¢:

* ¢ ~ Gamma(yi,vy2)
* log(¢) ~ N(ug, 3)
* ¢ ~ DiscUnif(®)

* ¢ ~ Half-Cauchy(v)

Mevin Hooten Spatial Models  24/29



Modeling
Prediction
Bayesian Geostatistics Generalizations

Bayesian Kriging

e Goal: predict y(s,) at unobserved location s, given the
model and the data y(s;) fori =1,...,n.

y(si) = x(si)' B + e(si)

* We need the posterior predictive distribution:

wdsl = [ [ [ndy.8.0%.0118.0% olyldao*as
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Modeling

Predictive Full-Conditional
Notice that:
* lyuly,B,0% ¢ = N(fi,5?)
where,

c h=x,8+cE !y —Xp)
e 52=02_¢X ¢
and,

¢ c= (Cla"'acn)/
® ¢ = COV(&U,&Z@')

* In MCMC, sample 5 ~ N(a®), 52(k)).
* The Bayesian Kriging predictor is: E(y,|y) ~ S35, o /K.
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Generalized Spatial Models

¢ Binary:
y; ~ Bern(p;)
logit(p;) = X;,B + &

e Count:
yi ~ Pois(\;)

log(Xi) = xiB + &
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Spatial Occupancy Model

‘ 0 , 2, =0
vi Binom(Ji,pi) ,zi =1

z; ~ Bern(1);)

* logit(p;) = wia +n; * n~N(0,%,)

* logit(4) = X} +&; © e~N(©0, %)
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