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Spatial Statistics

Overview
• Motivation.
• Overview of Spatial Statistics.
• Continouous Spatial Processes:

• Spatial correlation and covariance functions.
• Simulating spatial random processes.
• Assumptions.
• Small-scale variability.

• Assessing spatial dependence.
• Variograms and Covariograms.

• Geostatistical Modeling.
• Bayesian model formulation.
• Bayesian Kriging.
• Generalized spatial models.
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Spatial Statistics

Spatial Processes

1 Spatial Point Processes: Random locations are of
interest, sometimes associated point characteristics
(“marks”).

2 Continuous Spatial Processes: Random measurements
at fixed locations are of interest.

3 Areal Spatial Processes: Random measurements in fixed
regions are of interest.
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Continuous Spatial Processes
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Imagine a smooth 2-D function

y(s) = µ(s)+ε(s) ,where s ∈ ℜ

1 µ: First order, the mean
effect, a trend.

2 ε: Second order, often
thought of as correlated
error.
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Gaussian Spatial Regression

y = Xβ + ε, ε ∼ N(0,Σ)

1 First Order Structure: Xβ, the trend.
2 Second Order Structure: ε, where Σ can explain various

forms of spatial autocorrelation.
3 Prediction: Kriging.

Note: This is referred to as “model-based geostatistics.”
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Covariance function: Covariogram

Parametric Covariance Functions:

• Exponential: Σi,j = σ2 exp
(
−di,j

ϕ

)

• Gaussian: Σi,j = σ2 exp

(
−d2i,j

ϕ2

)

Note: di,j = distance between locations i and j.
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Parameteric Covariance Functions
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Important Assumptions

• Stationarity: spatial structure does not vary with location.

• Isotropy: spatial structure does not vary with direction.
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Two Sources of Error

Random Effects Approach:

y = Xβ + η + ε

1 Correlated Error: η ∼ N(0,Σ)

2 Uncorrelated Error: ε ∼ N(0, σ2εI)

Mevin Hooten Spatial Models 16/29



Overview of Spatial Statistics
Continuous Processes
Bayesian Geostatistics

Spatial Regression
Descriptive Statistics

Two Sources of Error

Hierarchical Approach:

y ∼ N(Xβ + η, σ2εI)

η ∼ N(0,Σ)

These both imply:

y ∼ N(Xβ,Σ+ σ2εI)
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Simulate a correlated continuous
spatial process

1 Choose locations si for i = 1, . . . , n.
2 Choose the mean µ. This could be a scalar or it could vary

spatially.
3 Choose range parameter ϕ and variance component σ2.
4 Compute distance matrix D between all n locations of

interest.
5 Calculate covariance matrix Σ = σ2 exp

(
−D

ϕ

)
.

6 Sample the n-dimensional vector y ∼ N(µ,Σ).

Mevin Hooten Spatial Models 18/29



Overview of Spatial Statistics
Continuous Processes
Bayesian Geostatistics

Spatial Regression
Descriptive Statistics

Assess the spatial correlation in a
data set

1 Assume y is measured at n spatial locations.
2 Compute the residuals: e = y − µ.
3 Examine the residuals e for spatial correlation (i.e.,

autocorrelation).
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Estimating spatial correlation

Empirical Semi-Variogram:

γ̂(d) =

∑
(ei − ej)

2

2N(d)
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Fitted Variogram

Classic Estimation:

• After the empirical variogram is estimated at several bins
for d, one can fit a parametric model to it.

• In this case, use γ̂(d) as the response variable and d as the
covariate in weighted least squares or nonlinear regression
to estimate σ2, ϕ.
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Semi-Variogram, Variogram, and
Covariogram

• Semi-Variogram: γ(d)
• Variogram: 2γ(d)
• Covariogram: cov(d) = cov(0)− γ(d)
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Bayesian Geostatistical Model
• Goal: use Bayesian methods to estimate β, σ2, and ϕ.

y ∼ N(Xβ,Σ)

• Σi,j = σ2 exp
(
−di,j

ϕ

)
.

• β ∼ N(µ,Σ).
• σ2 ∼ IG(q, r).
• Many choices for ϕ ∼ [ϕ].

Posterior:

[β, σ2, ϕ|y] = c× [y|β, σ2, ϕ][β][σ2][ϕ]

Mevin Hooten Spatial Models 23/29



Overview of Spatial Statistics
Continuous Processes
Bayesian Geostatistics

Modeling
Prediction
Generalizations

Prior Selection

Choices for range parameter ϕ:

• ϕ ∼ Gamma(γ1, γ2)

• log(ϕ) ∼ N(µϕ, σ
2
ϕ)

• ϕ ∼ DiscUnif(Φ)

• ϕ ∼ Half-Cauchy(γ)
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Bayesian Kriging

• Goal: predict y(su) at unobserved location su, given the
model and the data y(si) for i = 1, . . . , n.

y(si) = x(si)
′β + ε(si)

• We need the posterior predictive distribution:

[yu|y] =
∫ ∫ ∫

[yu|y,β, σ2, ϕ][β, σ2, ϕ|y]dβdσ2dϕ
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Predictive Full-Conditional
Notice that:

• [yu|y,β, σ2, ϕ] = N(µ̃, σ̃2)

where,
• µ̃ = x′

uβ + c′Σ−1(y −Xβ)

• σ̃2 = σ2 − c′Σ−1c

and,
• c = (c1, . . . , cn)

′

• ci = cov(εu, εi)

• In MCMC, sample y(k)u ∼ N(µ̃(k), σ̃2(k)).

• The Bayesian Kriging predictor is: E(yu|y) ≈
∑K

k=1 y
(k)
u /K.
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Generalized Spatial Models

• Binary:
yi ∼ Bern(pi)

logit(pi) = x′
iβ + εi

• Count:
yi ∼ Pois(λi)

log(λi) = x′
iβ + εi
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Spatial Occupancy Model

yi ∼

{
0 , zi = 0

Binom(Ji, pi) , zi = 1

zi ∼ Bern(ψi)

• logit(pi) = w′
iα+ ηi

• logit(ψi) = x′
iβ + εi

• η ∼ N(0,Ση)

• ε ∼ N(0,Σε)
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